Unknown

Dataset Information

0

The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages.


ABSTRACT: The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that mediates both the attachment of the long tail fibers to the virion and also controls, in an environmentally sensitive way, the phage's ability to infect its host bacteria. Subsequent to its distant period of modular exchange, the evolution of fibritin has proceeded primarily by the slow vertical divergence mechanism. We suggest that ancient and sudden changes in the environment forced the T4-like phages to alter fibritin's mode of action or function. The genome's response to such episodes of rapid environmental change could presumably only be achieved quickly enough by employing the modular evolution mechanism. A phylogenetic analysis of the fibritin locus reveals the possible traces of such events within the T4 superfamily's genomes.

SUBMITTER: Letarov AV 

PROVIDER: S-EPMC3797505 | biostudies-literature | 2013 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

The episodic evolution of fibritin: traces of ancient global environmental alterations may remain in the genomes of T4-like phages.

Letarov A V AV   Krisch H M HM  

Ecology and evolution 20130901 10


The evolutionary adaptation of bacteriophages to their environment is achieved by alterations of their genomes involving a combination of both point mutations and lateral gene transfer. A phylogenetic analysis of a large set of collar fiber protein (fibritin) loci from diverse T4-like phages indicates that nearly all the modular swapping involving the C-terminal domain of this gene occurred in the distant past and has since ceased. In phage T4, this fibritin domain encodes the sequence that medi  ...[more]

Similar Datasets

| S-EPMC5322556 | biostudies-literature
| S-EPMC4360716 | biostudies-literature
| S-EPMC2849012 | biostudies-literature
| S-EPMC532421 | biostudies-literature
| PRJEB29189 | ENA
| PRJEB64654 | ENA
| S-EPMC3165843 | biostudies-literature
| S-EPMC4275890 | biostudies-other
| S-EPMC8829908 | biostudies-literature
| S-EPMC10282092 | biostudies-literature