Unknown

Dataset Information

0

Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity.


ABSTRACT: DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (?H2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation. Moreover, MK2 activity was required for damage response, accumulation of ssDNA, and decreased survival when cells were treated with the nucleoside analogue gemcitabine or when the checkpoint kinase Chk1 was antagonized. By using DNA fiber assays, we found that MK2 inhibition or knockdown rescued DNA replication impaired by gemcitabine or by Chk1 inhibition. This rescue strictly depended on translesion DNA polymerases. In conclusion, instead of being an unavoidable consequence of DNA damage, alterations of replication speed and origin firing depend on MK2-mediated signaling.

SUBMITTER: Kopper F 

PROVIDER: S-EPMC3801042 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity.

Köpper Frederik F   Bierwirth Cathrin C   Schön Margarete M   Kunze Meike M   Elvers Ingegerd I   Kranz Dominique D   Saini Priyanka P   Menon Manoj B MB   Walter David D   Sørensen Claus Storgaard CS   Gaestel Matthias M   Helleday Thomas T   Schön Michael P MP   Dobbelstein Matthias M  

Proceedings of the National Academy of Sciences of the United States of America 20130930 42


DNA damage can obstruct replication forks, resulting in replicative stress. By siRNA screening, we identified kinases involved in the accumulation of phosphohistone 2AX (γH2AX) upon UV irradiation-induced replication stress. Surprisingly, the strongest reduction of phosphohistone 2AX followed knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced  ...[more]

Similar Datasets

| S-EPMC9565051 | biostudies-literature
| S-EPMC3074140 | biostudies-literature
| S-EPMC9208454 | biostudies-literature
| S-EPMC6130403 | biostudies-literature
| S-EPMC6101970 | biostudies-literature
| S-EPMC2169409 | biostudies-literature
| S-EPMC2860892 | biostudies-other
| S-EPMC2851793 | biostudies-literature
| S-EPMC9296464 | biostudies-literature
| S-EPMC6579113 | biostudies-literature