Genome-wide microRNA profiling of rat hippocampus after status epilepticus induced by amygdala stimulation identifies modulators of neuronal apoptosis.
Ontology highlight
ABSTRACT: MicroRNAs (miRNAs) are small and endogenously expressed non-coding RNAs that negatively regulate the expression of protein-coding genes at the translational level. Emerging evidence suggests that miRNAs play critical roles in central nervous system under physiological and pathological conditions. However, their expression and functions in status epilepticus (SE) have not been well characterized thus far. Here, by using high-throughput sequencing, we characterized miRNA expression profile in rat hippocampus at 24 hours following SE induced by amygdala stimulation. After confirmation by qRT-PCR, six miRNAs were found to be differentially expressed in brain after SE. Subsequent Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that most of the predicted target genes for these six miRNAs were related to neuronal apoptosis. We then investigated the dynamic changes of these six miRNAs at different time-point (4 hours, 24 hours, 1 week and 3 weeks) after SE. Meanwhile, neuronal survival and apoptosis in the hippocampus after SE were evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP end-labeling assay. We found that the expression of miR-874-3p, miR-20a-5p, miR-345-3p, miR-365-5p, and miR-764-3p were significantly increased from 24 hours to 1 week, whereas miR-99b-3p level was markedly decreased from 24 hours to 3 weeks after SE. Further analysis revealed that the levels of miR-365-5p and miR-99b-3p were significantly correlated with neuronal apoptosis after SE. Taken together, our data suggest that miRNAs are important modulators of SE-induced neuronal apoptosis. These findings also open new avenues for future studies aimed at developing strategies against neuronal apoptosis after SE.
SUBMITTER: Sun Z
PROVIDER: S-EPMC3808371 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature
ACCESS DATA