Project description:Radiation therapy is an effective cancer treatment that is constantly being transformed by technological innovation. Dedicated devices for fraction-by-fraction imaging and guidance within the treatment room have enabled image guided radiation therapy (IGRT) allowing clinicians to pursue highly conformal dose distributions, higher dose prescriptions, and shorter fractionation schedules. Capitalizing on IGRT-enabled accuracy and precision requires a strong link between IGRT practices and planning target volume (PTV) design. This is clearly central to high quality, safe radiation therapy. Failure to properly apply IGRT methods or to coordinate their use with an appropriate PTV margin can result in a treatment that is 'precisely wrong'. The white paper summarized in this executive summary recommends foundational elements and specific activities to maximize the safety and effectiveness of IGRT.
Project description:Informed by a series of systematic reviews, scoping reviews and evidence updates from the International Liaison Committee on Resuscitation, the 2021 European Resuscitation Council Guidelines present the most up to date evidence-based guidelines for the practice of resuscitation across Europe. The guidelines cover the epidemiology of cardiac arrest; the role that systems play in saving lives, adult basic life support, adult advanced life support, resuscitation in special circumstances, post resuscitation care, first aid, neonatal life support, paediatric life support, ethics and education.
Project description:The general objective of the "Rehabilitation Medicine Summit: Building Research Capacity" was to advance and promote research in medical rehabilitation by making recommendations to expand research capacity. The five elements of research capacity that guided the discussions were: 1) researchers; 2) research culture, environment, and infrastructure; 3) funding; 4) partnerships; and 5) metrics. The 100 participants included representatives of professional organizations, consumer groups, academic departments, researchers, governmental funding agencies, and the private sector. The small group discussions and plenary sessions generated an array of problems, possible solutions, and recommended actions. A post-Summit, multi-organizational initiative is called to pursue the agendas outlined in this report (see Additional File 1).
Project description:This report is part of a series of white papers commissioned for the American Society for Radiation Oncology (ASTRO) Board of Directors as part of ASTRO's Target Safely Campaign, focusing on the role of peer review as an important component of a broad safety/quality assurance (QA) program. Peer review is one of the most effective means for assuring the quality of qualitative, and potentially controversial, patient-specific decisions in radiation oncology. This report summarizes many of the areas throughout radiation therapy that may benefit from the application of peer review. Each radiation oncology facility should evaluate the issues raised and develop improved ways to apply the concept of peer review to its individual process and workflow. This might consist of a daily multidisciplinary (eg, physicians, dosimetrists, physicists, therapists) meeting to review patients being considered for, or undergoing planning for, radiation therapy (eg, intention to treat and target delineation), as well as meetings to review patients already under treatment (eg, adequacy of image guidance). This report is intended to clarify and broaden the understanding of radiation oncology professionals regarding the meaning, roles, benefits, and targets for peer review as a routine quality assurance tool. It is hoped that this work will be a catalyst for further investigation, development, and study of the efficacy of peer review techniques and how these efforts can help improve the safety and quality of our treatments.
Project description:BackgroundThis consensus aims to clarify the role of Dipeptidyl Peptidase-4 inhibitors (iDPP-4) in managing patients with diabetes during the COVID-19 pandemic.Materials and methodsA PubMed bibliographic search was carried out (December 2019-February 2021). Oxford methodology was used for the evaluation of evidence and possible recommendations were established by consensus.ResultsDiabetes appears to be an independent factor in COVID-19 disease (evidence 2b). No increased risk of contagion with iDPP-4 is demonstrated (evidence 2b), and its use has been shown to be safe (evidence 2b). The use of this drug may present a specific benefit in reducing mortality, particularly in in-hospital use (evidence 2a), reducing admission to intensive care units (evidence 2b) and the need for mechanical ventilation (evidence 2b).ConclusionsThe use of iDPP-4 appears to be safe in patients with COVID-19, and quality studies are needed to clarify their possible advantages further.
Project description:ObjectiveTo develop formal consensus-based guidance for the management of myasthenia gravis (MG).MethodsIn October 2013, the Myasthenia Gravis Foundation of America appointed a Task Force to develop treatment guidance for MG, and a panel of 15 international experts was convened. The RAND/UCLA appropriateness methodology was used to develop consensus guidance statements. Definitions were developed for goals of treatment, minimal manifestations, remission, ocular MG, impending crisis, crisis, and refractory MG. An in-person panel meeting then determined 7 treatment topics to be addressed. Initial guidance statements were developed from literature summaries. Three rounds of anonymous e-mail votes were used to attain consensus on guidance statements modified on the basis of panel input.ResultsGuidance statements were developed for symptomatic and immunosuppressive treatments, IV immunoglobulin and plasma exchange, management of impending and manifest myasthenic crisis, thymectomy, juvenile MG, MG associated with antibodies to muscle-specific tyrosine kinase, and MG in pregnancy.ConclusionThis is an international formal consensus of MG experts intended to be a guide for clinicians caring for patients with MG worldwide.
Project description:Iron deficiency anaemia is estimated to be the leading cause of years lived with disability among children. Young children's diets are often inadequate in iron and other micronutrients, and provision of essential vitamin and minerals has long been recommended. With the limited programmatic success of iron drop/syrup interventions, interest in micronutrient powders (MNP) has increased. MNP are a mixture of vitamins and minerals, enclosed in single-dose sachets, which are stirred into a child's portion of food immediately before consumption. MNP are an efficacious intervention for reducing iron deficiency anaemia and filling important nutrient gaps in children 6-23 months of age. As of 2014, 50 countries have implemented MNP programmes including 9 at a national level. This paper provides an overview of a 3-paper series, based on findings from the "Micronutrient Powders Consultation: Lessons Learned for Operational Guidance" held by the USAID-funded Strengthening Partnerships, Results, and Innovations in Nutrition Globally (SPRING) Project. The objectives of the Consultation were to identify and summarize the most recent MNP programme experiences and lessons learned for operationalizing MNP for young children and prioritize an implementation research agenda. The Consultation was composed of 3 working groups that used the following methods: deliberations among 49 MNP programme implementers and experts, a review of published and grey literature, questionnaires, and key informant interviews, described in this overview. The following articles summarize findings in 3 broad programme areas: planning, implementation, and continual programme improvement. The papers also outline priorities for implementation research to inform improved operationalization of MNP.
Project description:This paper discusses pediatric image quality and radiation dose considerations in state-of-the-art fluoroscopic imaging equipment. Although most fluoroscopes are capable of automatically providing good image quality on infants, toddlers, and small children, excessive radiation dose levels can result from design deficiencies of the imaging device or inappropriate configuration of the equipment's capabilities when imaging small body parts. Important design features and setup choices at installation and during the clinical use of the imaging device can improve image quality and reduce radiation exposure levels in pediatric patients. Pediatric radiologists and cardiologists, with the help of medical physicists, need to understand the issues involved in creating good image quality at reasonable pediatric patient doses. The control of radiographic technique factors by the generator of the imaging device must provide a large dynamic range of mAs values per exposure pulse during both fluoroscopy and image recording as a function of patient girth, which is the thickness of the patient in the posterior-anterior projection at the umbilicus (less than 10 cm to greater than 30 cm). The range of pulse widths must be limited to less than 10 ms in children to properly freeze patient motion. Variable rate pulsed fluoroscopy can be leveraged to reduce radiation dose to the patient and improve image quality. Three focal spots with nominal sizes of 0.3 mm to 1 mm are necessary on the pediatric unit. A second, lateral imaging plane might be necessary because of the child's limited tolerance of contrast medium. Spectral and spatial beam shaping can improve image quality while reducing the radiation dose. Finally, the level of entrance exposure to the image receptor of the fluoroscope as a function of operator choices, of added filter thickness, of selected pulse rate, of the selected field-of-view and of the patient girth all must be addressed at installation.