Independent localization of plasma membrane and chloroplast components during eyespot assembly.
Ontology highlight
ABSTRACT: Like many algae, Chlamydomonas reinhardtii is phototactic, using two anterior flagella to swim toward light optimal for photosynthesis. The flagella are responsive to signals initiated at the photosensory eyespot, which comprises photoreceptors in the plasma membrane and layers of pigment granules in the chloroplast. Phototaxis depends on placement of the eyespot at a specific asymmetric location relative to the flagella, basal bodies, and bundles of two or four highly acetylated microtubules, termed rootlets, which extend from the basal bodies toward the posterior of the cell. Previous work has shown that the eyespot is disassembled prior to cell division, and new eyespots are assembled in daughter cells adjacent to the nascent four-membered rootlet associated with the daughter basal body (D4), but the chronology of these assembly events has not been determined. Here we use immunofluorescence microscopy to follow assembly and acetylation of the D4 rootlet, localization of individual eyespot components in the plasma membrane or chloroplast envelope, and flagellar emergence during and immediately following cell division. We find that the D4 rootlet is assembled before the initiation of eyespot assembly, which occurs within the same time frame as rootlet acetylation and flagellar outgrowth. Photoreceptors in the plasma membrane are correctly localized in eyespot mutant cells lacking pigment granule layers, and chloroplast components of the eyespot assemble in mutant cells in which photoreceptor localization is retarded. The data suggest that plasma membrane and chloroplast components of the eyespot are independently responsive to a cytoskeletal positioning cue.
SUBMITTER: Mittelmeier TM
PROVIDER: S-EPMC3811559 | biostudies-literature | 2013 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA