Unknown

Dataset Information

0

Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces.


ABSTRACT: Antibiotic production and cell differentiation in Streptomyces is stimulated by micromolar levels of Cu(2+) . Here, we knocked out the Sco1/SenC family copper chaperone (ScoC) encoded in the conserved gene cluster 'sco' (the S treptomycescopper utilization) in Streptomyces coelicolor A3(2) and S.?griseus. It is known that the Sco1/SenC family incorporates Cu(2+) into the active centre of cytochrome oxidase (cox). The knockout caused a marked delay in antibiotic production and aerial mycelium formation on solid medium, temporal pH decline in glucose-containing liquid medium, and significant reduction of cox activity in S.?coelicolor. The scoC mutant produced two- to threefold higher cellular mass of the wild type exhibiting a marked cox activity in liquid medium supplied with 10?µM CuSO(4) , suggesting that ScoC is involved in not only the construction but also the deactivation of cox. The scoC mutant was defective in the monoamine oxidase activity responsible for cell aggregation and sedimentation. These features were similarly observed with regard to the scoC mutant of S.?griseus. The scoC mutant of S.?griseus was also defective in the extracellular activity oxidizing N,N'-dimethyl-p-phenylenediamine sulfate. Addition of 10?µM CuSO(4) repressed the activity of the conserved promoter preceding scoA and caused phenylalanine auxotrophy in some Streptomyces spp. probably because of the repression of pheA; pheA encodes prephenate dehydratase, which is located at the 3' terminus of the putative operon structure. Overall, the evidence indicates that Sco is crucial for the utilization of copper under a low-copper condition and for the activation of the multiple Cu(2+) -containing oxidases that play divergent roles in the complex physiology of Streptomyces.

SUBMITTER: Fujimoto M 

PROVIDER: S-EPMC3815325 | biostudies-literature | 2012 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Pleiotropic role of the Sco1/SenC family copper chaperone in the physiology of Streptomyces.

Fujimoto Masahiro M   Yamada Akio A   Kurosawa Junpei J   Kawata Akihiro A   Beppu Teruhiko T   Takano Hideaki H   Ueda Kenji K  

Microbial biotechnology 20111124 4


Antibiotic production and cell differentiation in Streptomyces is stimulated by micromolar levels of Cu(2+) . Here, we knocked out the Sco1/SenC family copper chaperone (ScoC) encoded in the conserved gene cluster 'sco' (the S treptomycescopper utilization) in Streptomyces coelicolor A3(2) and S. griseus. It is known that the Sco1/SenC family incorporates Cu(2+) into the active centre of cytochrome oxidase (cox). The knockout caused a marked delay in antibiotic production and aerial mycelium fo  ...[more]

Similar Datasets

| S-EPMC4273408 | biostudies-literature
| S-EPMC3106114 | biostudies-literature
| S-EPMC5039574 | biostudies-literature
| S-EPMC4135688 | biostudies-literature
| S-EPMC2383975 | biostudies-literature
| S-EPMC8682889 | biostudies-literature
| S-EPMC4971835 | biostudies-literature
| S-EPMC2516206 | biostudies-literature
| S-EPMC3596241 | biostudies-literature
| S-EPMC1150991 | biostudies-literature