Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function.
Ontology highlight
ABSTRACT: Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead transcription factor FoxO1. Muscle overloading, but not treadmill running, corrected protein synthesis and levels of mediators of protein synthesis such as phosphorylated mTOR and p70S6K in the muscles of mice with CKD. In these mice, muscle overload, but not treadmill, running, increased muscle progenitor cell number and activity as measured by the amounts of MyoD, myogenin, and eMyHC mRNAs. Muscle overload not only increased plantaris weight and reduced muscle proteolysis but also corrected intracellular signals regulating protein and progenitor cell function in mice with CKD. Treadmill running corrects muscle proteolysis but not protein synthesis or progenitor cell function. Our results provide a basis for evaluating different types of exercise on muscle atrophy in patients with chronic kidney disease.
SUBMITTER: Wang XH
PROVIDER: S-EPMC3835682 | biostudies-literature | 2009 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA