Unknown

Dataset Information

0

DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.


ABSTRACT: BACKGROUND: The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure approaches and their biological applications. RESULTS: We have developed DaGO-Fun, an online tool available at http://web.cbio.uct.ac.za/ITGOM, which incorporates many different GO similarity measures for exploring, analyzing and comparing GO terms and proteins within the context of GO. It uses GO data and UniProt proteins with their GO annotations as provided by the Gene Ontology Annotation (GOA) project to precompute GO term information content (IC), enabling rapid response to user queries. CONCLUSIONS: The DaGO-Fun online tool presents the advantage of integrating all the relevant IC-based GO similarity measures, including topology- and annotation-based approaches to facilitate effective exploration of these measures, thus enabling users to choose the most relevant approach for their application. Furthermore, this tool includes several biological applications related to GO semantic similarity scores, including the retrieval of genes based on their GO annotations, the clustering of functionally related genes within a set, and term enrichment analysis.

SUBMITTER: Mazandu GK 

PROVIDER: S-EPMC3849277 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

DaGO-Fun: tool for Gene Ontology-based functional analysis using term information content measures.

Mazandu Gaston K GK   Mulder Nicola J NJ  

BMC bioinformatics 20130925


<h4>Background</h4>The use of Gene Ontology (GO) data in protein analyses have largely contributed to the improved outcomes of these analyses. Several GO semantic similarity measures have been proposed in recent years and provide tools that allow the integration of biological knowledge embedded in the GO structure into different biological analyses. There is a need for a unified tool that provides the scientific community with the opportunity to explore these different GO similarity measure appr  ...[more]

Similar Datasets

| S-EPMC5006308 | biostudies-literature
| S-EPMC4256219 | biostudies-literature
| S-EPMC1538798 | biostudies-literature
| S-EPMC5260111 | biostudies-literature
| S-EPMC3775452 | biostudies-literature
| S-EPMC2518162 | biostudies-literature
| S-EPMC3572115 | biostudies-literature
| S-EPMC5780854 | biostudies-literature
| S-EPMC3847089 | biostudies-literature
| S-EPMC3037419 | biostudies-literature