Project description:KPNA3 is a gene that has been linked to schizophrenia susceptibility. In this study we investigated the possible association between KPNA3 variation and schizophrenia. To investigate a wider role of KPNA3 across psychiatric disorders we also analysed major depression, PTSD, nicotine dependent, alcohol dependent and opiate dependent cohorts. Using a haplotype block-based gene-tagging approach we genotyped six KPNA3 single nucleotide polymorphisms (SNPs) in 157 schizophrenia patients, 121 post-traumatic stress disorder patients, 120 opiate dependent patients, 231 alcohol dependent patients, 147 nicotine dependent patients and 266 major depression patients. One SNP rs2273816 was found to be significantly associated with schizophrenia, opiate dependence and alcohol dependence at the genotype and allele level. Major depression was also associated with rs2273816 but only at the allele level. Our study suggests that KPNA3 may contribute to the genetic susceptibility to schizophrenia as well as other psychiatric disorders.
Project description:Background: Genetics influence the vulnerability to alcohol use disorders, and among the implicated genes, three previous studies have provided evidences for the involvement of LRRK2 in alcohol dependence (AD). LRRK2 expression is broadly dysregulated in postmortem brain from AD humans, as well as in the brain of mice with alcohol dependent-like behaviors and in a zebrafish model of alcohol preference. The aim of the present study was to evaluate the association of variants in the LRRK2 gene with AD in multiethnic populations from South and North America. Methods: Alcohol-screening questionnaires [such as CAGE and Alcohol Use Disorders Identification Test (AUDIT)] were used to determine individual risk of AD. Multivariate logistic regression analyses were done in three independent populations (898 individuals from Bambuí, Brazil; 3,015 individuals from Pelotas, Brazil; and 1,316 from the United States). Linkage disequilibrium and conditional analyses, as well as in silico functional analyses, were also conducted. Results: Four LRRK2 variants were significantly associated with AD in our discovery cohort (Bambuí): rs4768231, rs4767971, rs7307310, and rs1465527. Two of these variants (rs4768231 and rs4767971) were replicated in both Pelotas and US cohorts. The consistent association signal (at the LRRK2 locus) found in populations with different genetic backgrounds reinforces the relevance of our findings. Conclusion: Taken together, these results support the notion that genetic variants in the LRRK2 locus are risk factors for AD in humans.
Project description:GABRG1 and GABRA2, genes that encode the ?1 and ?2 subunits, respectively, of the GABA-A receptor, are located in a cluster on chromosome 4p. Association of alcohol dependence (AD) with markers located at the 3' region of GABRA2 has been replicated in several studies, but recent studies suggested the possibility that the signal may be attributable to the adjacent gene, GABRG1, located 90 kb distant in the 3' direction. Owing to strong linkage disequilibrium (LD) in European Americans (EAs), the origin, or origins, of the association signal is very difficult to discern, but our previous population-based study suggested that decreased LD across the GABRG1-GABRA2 region in African Americans (AAs) may be useful for fine mapping and resolution of the association signal in that population.To examine these associations in greater detail, we genotyped 13 single nucleotide polymorphisms (SNPs) spanning GABRG1 and GABRA2 in 380 AAs with AD and in 253 AA controls.Although there was no association between any individual SNP and AD, a highly significant difference was shown between AD subjects and controls in the frequency of a 3-SNP GABRA2 haplotype (global p = 0.00029). A similar level of significance was obtained in 6-SNP haplotypes that combined tagging SNPs from both genes (global p = 0.00994). High statistical significance was also shown with a 6-SNP haplotype (T-G-C-G-T-A), p = 0.0033. The T-G-C-G-T-A haplotype contains the most significant GABRA2 3-SNP haplotype (p = 0.00019), G-T-A.These findings reflect the interrelationship between these 2 genes and the likelihood that risk loci exist in each of them. Study of an AA population allowed evaluation of these associations at higher genomic resolution than is possible in a EA population, owing to the much lower LD across these loci in AAs.
Project description:Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant in the 3'-UTR of the CHRNA3 gene and nicotine dependence. In this study we performed a comprehensive association analysis of the CHRNA5-CHRNA3-CHRNB4 gene cluster in the Collaborative Study on the Genetics of Alcoholism (COGA) families to investigate the role of genetic variants in risk for alcohol dependence. Using the family-based association test, we observed that a different group of polymorphisms, spanning CHRNA5-CHRNA3, demonstrate association with alcohol dependence defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV) criteria. Using logistic regression we replicated this finding in an independent case-control series from the family study of cocaine dependence. These variants show low linkage disequilibrium with the SNPs previously reported to be associated with nicotine dependence and therefore represent an independent observation. Functional studies in human brain reveal that the variants associated with alcohol dependence are also associated with altered steady-state levels of CHRNA5 mRNA.
Project description:Eleven single-nucleotide polymorphisms (SNPs) spanning OPRD1 were examined in 1063 European Americans (EAs) (620 cases with substance dependence (SD), including 557 with alcohol dependence (AD), 225 with cocaine dependence (CD) and 111 with opioid dependence (OD), and 443 controls). Nominally significant associations (P<0.05) of five SNPs with SD were observed; only the association of the non-synonymous variant G80T with OD remained significant after correction for multiple testing using SNPSpD. Haplotype analyses with six tag SNPs indicated that a specific haplotype GCAACT, which harbors G80T G-allele and C921T C-allele, was significantly associated with AD (chi(2)=14.82, degrees of freedom (d.f.)=1, P<0.001), CD (chi(2)=9.19, d.f.=1, P=0.002) and OD (chi(2)=20.68, d.f.=1, P<0.001). Logistic regression analyses, with sex and age being considered, demonstrated that this haplotype had a risk effect on AD (P=0.03, beta=1.86, odds ratio (OR)=6.43) and especially on OD (P<0.001, beta=3.92, OR=50.57). Moreover, seven SNPs covering OPRK1 were examined in the majority of the above subjects (390 cases, including 327 AD, 177 CD and 97 OD subjects, and 358 controls). Although no significant differences in allele, genotype or haplotype frequency distributions were seen between cases and controls, a specific OPRK1 haplotype, GGCTTCT, was significantly associated with AD (chi(2)=8.12, d.f.=1, P=0.004). Logistic regression analyses also revealed its risk effect on AD (P=0.009, beta=1.06, OR=2.90). Population stratification artifact was not observed in the sample. Taken together, our findings supported a positive association between OPRD1 variants and SD, and a positive haplotypic association between OPRK1 and AD in EAs.
Project description:Researchers are using various strategies to identify the genes that may be associated with alcoholism. The initial efforts primarily relied on candidate gene and linkage studies; more recently, however, modern advances in genotyping have resulted in widespread use of genome-wide association studies for alcohol dependence. The key findings of the earlier studies were that variations (i.e., polymorphisms) in the DNA sequences of the genes encoding alcohol dehydrogenase 1B (i.e., the ADH1B gene), aldehyde dehydrogenase 2 (i.e., the ALDH2 gene), and other alcohol-metabolizing enzymes mediate the risk for alcoholism; moreover, these polymorphisms also have an impact on the risk of alcohol-related cancers, such as esophageal cancer. In addition, a gene encoding one of the receptors for the neurotransmitter γ-aminobutyric acid (GABA) known as GABRA2 seems to have a role in the development of alcohol dependence. Genome-wide association studies now offer a host of emerging opportunities, as well as challenges, for discovering the genetic etiology of alcohol dependence and for unveiling new treatment strategies.
Project description:A coding variant in alcohol dehydrogenase 1B (ADH1B) (rs1229984) that leads to the replacement of Arg48 with His48 is common in Asian populations and reduces their risk for alcoholism, but because of very low allele frequencies the effects in European or African populations have been difficult to detect. We genotyped and analyzed this variant in three large European and African-American case-control studies in which alcohol dependence was defined by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria, and demonstrated a strong protective effect of the His48 variant (odds ratio (OR) 0.34, 95% confidence interval (CI) 0.24, 0.48) on alcohol dependence, with genome-wide significance (6.6 × 10(-10)). The hypothesized mechanism of action involves an increased aversive reaction to alcohol; in keeping with this hypothesis, the same allele is strongly associated with a lower maximum number of drinks in a 24-hour period (lifetime), with P=3 × 10(-13). We also tested the effects of this allele on the development of alcoholism in adolescents and young adults, and demonstrated a significantly protective effect. This variant has the strongest effect on risk for alcohol dependence compared with any other tested variant in European populations.
Project description:BackgroundPrevious genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies.MethodsWe employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate.ResultsNo single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10-5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10-5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family.ConclusionsTo our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD.
Project description:ImportanceAlcohol dependence (AD) and major depression (MD) are leading causes of disability that often co-occur. Genetic epidemiologic data have shown that AD and MD share a common possible genetic cause. The molecular nature of this shared genetic basis is poorly understood.ObjectivesTo detect genetic risk variants for comorbid AD and MD and to determine whether polygenic risk alleles are shared with neuropsychiatric traits or subcortical brain volumes.Design, setting, and participantsThis genome-wide association study analyzed criterion counts of comorbid AD and MD in African American and European American data sets collected as part of the Yale-Penn study of the genetics of drug and alcohol dependence from February 14, 1999, to January 13, 2015. After excluding participants never exposed to alcohol or with missing information for any diagnostic criterion, genome-wide association studies were performed on 2 samples (the Yale-Penn 1 and Yale-Penn 2 samples) totaling 4653 African American participants and 3169 European American participants (analyzed separately). Tests were performed to determine whether polygenic risk scores derived from potentially related traits in European American participants could be used to estimate comorbid AD and MD.Main outcomes and measuresComorbid criterion counts (ranging from 0 to 14) for AD (7 criteria) and MD (9 criteria, scaled to 7) as defined by the DSM-IV.ResultsOf the 7822 participants (3342 women and 4480 men; mean [SD] age, 40.1 [10.7] years), the median comorbid criterion count was 6.2 (interquartile range, 2.3-10.9). Under the linear regression model, rs139438618 at the semaphorin 3A (SEMA3A [OMIM 603961]) locus was significantly associated with AD and MD comorbidity in African American participants in the Yale-Penn 1 sample (β = 0.89; 95% CI, 0.57-1.20; P = 2.76 × 10-8). In the independent Yale-Penn 2 sample, the association was also significant (β = 0.83; 95% CI, 0.39-1.28; P = 2.06 × 10-4). Meta-analysis of the 2 samples yielded a more robust association (β = 0.87; 95% CI, 0.61-1.12; P = 2.41 × 10-11). There was no significant association identified in European American participants. Analyses of polygenic risk scores showed that individuals with a higher risk of neuroticism (β = 1.01; 95% CI, 0.50-1.52) or depressive symptoms (β = 0.87; 95% CI, 0.32-1.42) and a lower level of subjective well-being (β = -0.94; 95% CI, -1.46 to -0.42) and educational attainment (β = -1.00, 95% CI, -1.57 to -0.44) had a higher level of AD and MD comorbidity, while larger intracranial (β = 1.07; 95% CI, 0.50 to 1.64) and smaller putamen volumes (β = -1.16; 95% CI, -1.86 to -0.46) were associated with higher risks of AD and MD comorbidity.Conclusions and relevanceSEMA3A variation is significantly and replicably associated with comorbid AD and MD in African American participants. Analyses of polygenic risk scores identified pleiotropy with neuropsychiatric traits and brain volumes. Further studies are warranted to understand the biological and genetic mechanisms of this comorbidity, which could facilitate development of medications and other treatments for comorbid AD and MD.
Project description:To further explore reports of association of alcohol dependence and response to acamprosate treatment with the GATA4 rs13273672 single nucleotide polymorphism (SNP), we genotyped this and 10 other GATA4 SNPs in 816 alcohol-dependent cases and 1248 controls. We tested for association of alcohol dependence with the 11 SNPs individually and performed a global test for association using a principle components analysis. Our analyses demonstrate significant association between GATA4 and alcohol dependence at the gene level (P?=?0.009) but no association with rs13273672. Further studies are needed to identify potential causal GATA4 variation(s) and the functional mechanism(s) contributing to this association.