Unknown

Dataset Information

0

Dipalladium(I) terphenyl diphosphine complexes as models for two-site adsorption and activation of organic molecules.


ABSTRACT: A para-terphenyl diphosphine was employed to support a dipalladium(I) moiety. Unlike previously reported dipalladium(I) species, the present system provides a single molecular hemisphere for binding of ligands across two metal centers, enabling the characterization and comparison of the binding of a wide variety of saturated and unsaturated organic molecules. The dipalladium(I) terphenyl diphosphine toluene-capped complex was synthesized from a dipalladium(I) hexaacetonitrile precursor in the presence of toluene. The palladium centers display interactions with the ?-systems of the central ring of the terphenyl unit and that of the toluene. Exchange of toluene for anisole, 1,3-butadiene, 1,3-cyclohexadiene, thiophenes, pyrroles, or furans resulted in well-defined ?-bound complexes which were studied by crystallography, nuclear magnetic resonance (NMR) spectroscopy, and density functional theory. Structural characterization shows that the interactions of the dipalladium unit with the central arene of the diphosphine does not vary significantly in this series allowing for a systematic comparison of the binding of the incoming ligands to the dipalladium moiety. Several of the complexes exhibit rare ?-?(2):?(2) or ?-?(2):?(1)(O or S) bridging motifs. Hydrogenation of the thiophene and benzothiophene adducts was demonstrated to proceed at room temperature. The relative binding strength of the neutral ligands was determined by competition experiments monitored by NMR spectroscopy. The relative equilibrium constants for ligand substitution span over 13 orders of magnitude. This represents the most comprehensive analysis to date of the relative binding of heterocycles and unsaturated ligands to bimetallic sites. Binding interactions were computationally studied with electrostatic potentials and molecular orbital analysis. Anionic ligands were also demonstrated to form ?-bound complexes.

SUBMITTER: Lin S 

PROVIDER: S-EPMC3851319 | biostudies-literature | 2013 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dipalladium(I) terphenyl diphosphine complexes as models for two-site adsorption and activation of organic molecules.

Lin Sibo S   Herbert David E DE   Velian Alexandra A   Day Michael W MW   Agapie Theodor T  

Journal of the American Chemical Society 20131010 42


A para-terphenyl diphosphine was employed to support a dipalladium(I) moiety. Unlike previously reported dipalladium(I) species, the present system provides a single molecular hemisphere for binding of ligands across two metal centers, enabling the characterization and comparison of the binding of a wide variety of saturated and unsaturated organic molecules. The dipalladium(I) terphenyl diphosphine toluene-capped complex was synthesized from a dipalladium(I) hexaacetonitrile precursor in the pr  ...[more]

Similar Datasets

| S-EPMC3897266 | biostudies-literature
| S-EPMC5998174 | biostudies-literature
| S-EPMC8209108 | biostudies-literature
| S-EPMC8161480 | biostudies-literature
| S-EPMC9322675 | biostudies-literature
| S-EPMC9490839 | biostudies-literature
| S-EPMC8252388 | biostudies-literature
| S-EPMC8144400 | biostudies-literature
| S-EPMC6502988 | biostudies-literature
| S-EPMC5352977 | biostudies-literature