Unknown

Dataset Information

0

Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.


ABSTRACT: Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-?B and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-?B activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-?B and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-?B and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.

SUBMITTER: Ekman M 

PROVIDER: S-EPMC3858279 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness.

Ekman Mari M   Bhattachariya Anirban A   Dahan Diana D   Uvelius Bengt B   Albinsson Sebastian S   Swärd Karl K  

PloS one 20131210 12


Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness.  ...[more]

Similar Datasets

| S-EPMC8222387 | biostudies-literature
2024-05-21 | PXD044777 | Pride
| S-EPMC4305303 | biostudies-literature
| S-EPMC4374996 | biostudies-literature
| S-EPMC7093189 | biostudies-literature
| S-EPMC8042216 | biostudies-literature
2021-04-20 | GSE167430 | GEO
| S-EPMC9995959 | biostudies-literature
| S-EPMC5291730 | biostudies-literature
2021-09-10 | PXD024378 | Pride