Internalizing MHC class II-peptide complexes are ubiquitinated in early endosomes and targeted for lysosomal degradation.
Ontology highlight
ABSTRACT: As sentinels of the immune system, dendritic cells (DCs) continuously generate and turnover antigenic peptide-MHC class II complexes (pMHC-II). pMHC-II generation is a complex process that involves many well-characterized MHC-II biosynthetic intermediates; however, the mechanisms leading to MHC-II turnover/degradation are poorly understood. We now show that pMHC-II complexes undergoing clathrin-independent endocytosis from the DC surface are efficiently ubiquitinated by the E3 ubiquitin ligase March-I in early endosomes, whereas biosynthetically immature MHC-II-Invariant chain (Ii) complexes are not. The inability of MHC-II-Ii to serve as a March-I substrate is a consequence of Ii sorting motifs that divert the MHC-II-Ii complex away from March-I(+) early endosomes. When these sorting motifs are mutated, or when clathrin-mediated endocytosis is inhibited, MHC-II-Ii complexes internalize by using a clathrin-independent endocytosis pathway and are now ubiquitinated as efficiently as pMHC-II complexes. These data show that the selective ubiquitination of internalizing surface pMHC-II in March-I(+) early endosomes promotes degradation of "old" pMHC-II and spares forms of MHC-II that have not yet loaded antigenic peptides or have not yet reached the DC surface.
SUBMITTER: Furuta K
PROVIDER: S-EPMC3864281 | biostudies-literature | 2013 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA