Dual inhibition of PI3K and mTOR signaling pathways decreases human pancreatic neuroendocrine tumor metastatic progression.
Ontology highlight
ABSTRACT: Patients with advanced pancreatic neuroendocrine tumors have limited therapeutic options. Everolimus (RAD001), an inhibitor of the mammalian target of rapamycin (mTOR) pathway, has been shown to increase progression-free survival, but not overall survival, indicating a need to identify additional therapeutic targets. Inhibition of mTOR complex 1 by RAD001 may induce upstream AKT upregulation. We hypothesized that dual inhibition of AKT along with mTOR will overcome the limited activity of RAD001 alone.The BON cell line has been used as a model to study pancreatic neuroendocrine tumor cell biology. Western blots and cell growth assays were performed with mTOR inhibitor RAD001 (50 nM), mitogen-activated protein kinase inhibitor PD0325901 (50 nM), PI3K (phosphatidylinositol 3-kinase) inhibitor LY294002 (25 ?M), or vehicle control. Nude mice were treated daily for 6 weeks with RAD001 (oral gavage) and with LY29400 (subcutaneous) 1 week after intrasplenic injection of BON cells.Cellular proliferation was most attenuated with the combination therapy of LY29400 and RAD001. Similarly, the volume of liver metastasis was lowest in the group treated with both LY29400 (100 mg/kg per week, subcutaneous) and RAD001 (2.5 mg/kg per day) compared with that in the vehicle group (P = 0.04).The combination therapy of LY29400 and RAD001 decreased the cell growth in vitro and progression of liver metastasis in vivo compared with vehicle or with single-drug therapy.
SUBMITTER: Djukom C
PROVIDER: S-EPMC3864633 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA