Ontology highlight
ABSTRACT: Background
Previous studies have shown that viable myocardium predicts recovery of left ventricular (LV) dysfunction after revascularization. Our aim was to evaluate the prognostic value of myocardial scar assessed by late gadolinium-enhanced cardiovascular magnetic resonance imaging (LGE-CMR) on functional recovery in patients undergoing coronary artery bypass grafting (CABG).Methods
From November 2009 to September 2012, 63 patients with reduced left ventricular ejection fraction (LVEF) referred for first-time isolated CABG were prospectively enrolled, 52 were included in final analysis. LV functional parameters and scar tissue were assessed by LGE-CMR at baseline and 6 months after surgery. Patency of grafts was evaluated by computed tomography angiography (CTA) 6 months post-CABG. Predictors for global functional recovery were analyzed.Results
The baseline LVEF was 32.7 ± 9.2%, which improved to 41.6 ± 11.0% 6 months later and 32/52 patients improved LVEF by ? 5%. Multivariate logistic regression analysis showed that the most significant negative predictor for global functional recovery was the number of scar segments (Odds ratio 2.864, 95% Confidence Interval 1.172-6.996, p = 0.021). Receiver-Operator-Characteristic (ROC) analysis demonstrated that ? 4 scar segments predicted global functional recovery with a sensitivity and specificity of 85.0% and 87.5%, respectively (AUC = 0.91, p<0.001). Comparison of ROC curves also indicated that scar tissue was superior to viable myocardium in predicting cardiac functional recovery (p<0.001).Conclusions
Our findings indicated that scar tissue on LGE-CMR is an independent negative predictor of cardiac functional recovery in patients with impaired LV function undergoing CABG. These observations may be helpful for clinicians and cardiovascular surgeons to determine which patients are most likely to benefit from surgical revascularization.
SUBMITTER: Yang T
PROVIDER: S-EPMC3864907 | biostudies-literature | 2013
REPOSITORIES: biostudies-literature