Unknown

Dataset Information

0

Bactericidal activity of black silicon.


ABSTRACT: Black silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications. Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata. Here we show that the nanoprotrusions on the surfaces of both black silicon and D. bipunctata wings form hierarchical structures through the formation of clusters of adjacent nanoprotrusions. These structures generate a mechanical bactericidal effect, independent of chemical composition. Both surfaces are highly bactericidal against all tested Gram-negative and Gram-positive bacteria, and endospores, and exhibit estimated average killing rates of up to ~450,000 cells min(-1) cm(-2). This represents the first reported physical bactericidal activity of black silicon or indeed for any hydrophilic surface. This biomimetic analogue represents an excellent prospect for the development of a new generation of mechano-responsive, antibacterial nanomaterials.

SUBMITTER: Ivanova EP 

PROVIDER: S-EPMC3868328 | biostudies-literature | 2013

REPOSITORIES: biostudies-literature

altmetric image

Publications


Black silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications. Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata. Here we show that the nanoprotrusions on the surfaces of both black silicon and D. bipunctata wings form hierarchical structures through the formation of  ...[more]

Similar Datasets

| S-EPMC6199077 | biostudies-literature
| S-EPMC4865946 | biostudies-literature
| S-EPMC6187698 | biostudies-literature
| S-EPMC8550040 | biostudies-literature
| S-EPMC5522682 | biostudies-literature
2017-06-16 | GSE100091 | GEO
| S-EPMC6584650 | biostudies-literature
| S-EPMC8473570 | biostudies-literature
| S-EPMC4872531 | biostudies-literature
| S-EPMC4019156 | biostudies-literature