Unknown

Dataset Information

0

Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges.


ABSTRACT: Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presented. By scanning regions of interest of several tens of micrometers at different rocking angles of the sample in the vicinity of two Bragg reflections, reciprocal space is effectively mapped in three dimensions at each scanning position, obtaining the bending, as well as the in-plane and out-of-plane strain components. Highly strained large-area Ge structures with applications in optoelectronics are used to demonstrate the potential of this technique and the results are compared with finite-element-method models for validation.

SUBMITTER: Etzelstorfer T 

PROVIDER: S-EPMC3874020 | biostudies-literature | 2014 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges.

Etzelstorfer Tanja T   Süess Martin J MJ   Schiefler Gustav L GL   Jacques Vincent L R VL   Carbone Dina D   Chrastina Daniel D   Isella Giovanni G   Spolenak Ralph R   Stangl Julian J   Sigg Hans H   Diaz Ana A  

Journal of synchrotron radiation 20131102 Pt 1


Strained semiconductors are ubiquitous in microelectronics and microelectromechanical systems, where high local stress levels can either be detrimental for their integrity or enhance their performance. Consequently, local probes for elastic strain are essential in analyzing such devices. Here, a scanning X-ray sub-microprobe experiment for the direct measurement of deformation over large areas in single-crystal thin films with a spatial resolution close to the focused X-ray beam size is presente  ...[more]

Similar Datasets

| S-EPMC5290139 | biostudies-literature
| S-EPMC4673610 | biostudies-literature
| S-EPMC5133578 | biostudies-literature
| S-EPMC6107159 | biostudies-literature
| S-EPMC8927596 | biostudies-literature
| S-EPMC7206541 | biostudies-literature
| S-EPMC6690974 | biostudies-literature
| S-EPMC6128893 | biostudies-other
| S-EPMC7467344 | biostudies-literature
| S-EPMC7411943 | biostudies-literature