Project description:Urothelial bladder cancer (UBC) is heterogeneous at the clinical, pathological, genetic, and epigenetic levels. Exome sequencing has identified ARID1A as a novel tumor suppressor gene coding for a chromatin remodeling protein that is mutated in UBC. Here, we assess ARID1A alterations in two series of patients with UBC. In the first tumor series, we analyze exons 2-20 in 52 primary UBC and find that all mutant tumors belong to the aggressive UBC phenotype (high grade non-muscle invasive and muscle invasive tumors) (P = 0.05). In a second series (n = 84), we assess ARID1A expression using immunohistochemistry, a surrogate for mutation analysis, and find that loss of expression increases with higher stage/grade, it is inversely associated with FGFR3 overexpression (P = 0.03) but it is not correlated with p53 overexpression (P = 0.30). We also analyzed the expression of cytokeratins in the same set of tumor and find, using unsupervised clustering, that tumors with ARID1A loss of expression are generally KRT5/6-low. In this patient series, loss of ARID1A expression is also associated with worse prognosis, likely reflecting the higher prevalence of losses found in tumors of higher stage and grade. The independent findings in these two sets of patients strongly support the notion that ARID1A inactivation is a key player in bladder carcinogenesis occurring predominantly in FGFR3 wild type tumors.
Project description:FGFR3 is a prognostic and predictive marker and is a validated therapeutic target in urothelial bladder cancer. Its utility as a marker and target in the context of immunotherapy is incompletely understood. We review the role of FGFR3 in bladder cancer and discuss preclinical and clinical clues of its effectiveness as a patient selection factor and therapeutic target in the era of immunotherapy.
Project description:Comprehensive investigation of tumor-infiltrating lymphocytes in cancer is crucial to explore the effective immunotherapies, but the composition of infiltrating T cells in urothelial bladder carcinoma (UBC) remains elusive. Here, single-cell RNA sequencing (scRNA-seq) were performed on total 30,905 T cells derived from peripheral blood, adjacent normal and tumor tissues from two UBC patients. We identified 18 distinct T cell subsets based on molecular profiles and functional properties. Specifically, exhausted T (TEx) cells, exhausted NKT (NKTEx) cells, Ki67+ T cells and B cell-like T (B-T) cells were exclusively enriched in UBC. Additionally, the gene signatures of TEx, NKTEx, Ki67+ T and B-T cells were significantly associated with poor survival in patients with BC and various tumor types. Finally, IKZF3 and TRGC2 are the potential biomarkers of TEx cells. Overall, our study demonstrated an exhausted context of T cells in UBC, which layed a theoretical foundation for the development of effective tumor immunotherapies.
Project description:ObjectiveAT-rich interactive domain-containing protein 1A (ARID1A) is frequently mutated or deficient in various types of tumors. However, the role of ARID1A in bladder cancer remains unclear. We aimed to evaluate ARID1A expression and its biological role and correlation with prognosis in patients with urothelial bladder carcinoma (BUC).MethodsARID1A expression levels in BUC and normal tissues were assessed by immunohistochemistry and correlated with clinicopathological characteristics and patient outcomes. Downregulation of ARID1A was mimicked by transfection with small interfering RNA in T24 bladder cancer cells, and the effects on cell proliferation and migration were evaluated.ResultsARID1A expression was significantly reduced in BUC tissues and was significantly associated with T stage and AJCC stage. Upregulation of ARID1A predicted a better prognosis in BUC patients. ARID1A expression and lymph node status were identified as independent prognostic factors for overall survival. Silencing of ARID1A promoted the proliferation of BUC cells.ConclusionsARID1A may represent a novel diagnostic and prognostic biomarker in patients with BUC.
Project description:Pentatricopeptide repeat domain 1 (PTCD1) was reported to regulate mitochondrial metabolism and oxidative phosphorylation. However, the effect and mechanism of PTCD1 in the development of bladder urothelial carcinoma (BLCA) remain unclear. The databases from The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) were used to analyze the expression changes, clinical features, and prognostic values of PTCD1. A nomogram was built to predict the prognostic outcomes of BLCA cases. The potential genes interacting with PTCD1 were explored by Weighted Gene Coexpression Network Analysis (WGCNA). The estimation of associations between PTCD1 and tumor mutations, tumor immunities, and m6A methylations was performed. The study found that the gradual decrease of PTCD1 expression was observed with the increase of stage and grade. Low PTCD1 expression was greatly correlated with higher pathological stage, N stage, and poor prognosis in TCGA cohorts; interestingly, low-grade BLCA cases all exhibited high expression of PTCD1. HPA database analysis implied that the expression of PTCD1 protein in BLCA was lower than that in normal bladder tissue, and the protein expression of PTCD1 in high-grade BLCA was lower than that in low-grade BLCA. Multivariate Cox regression analysis indicated that PTCD1 may serve as an independent factor influencing prognosis of BLCA. Mechanistically, PTCD1 played a regulatory role in BLCA progression through multiple tumor-related pathways containing PI3K-Akt signaling, ECM-receptor interaction, oxidative phosphorylation, and extracellular matrix organization. WGCNA reported that PTCD1 had a strong positive correlation with POLR2J, ZNHT1, ATP5MF, PDAP1, BUD31, and COPS6. Besides, the mRNA expression of PTCD1 was negatively associated with immune cells' infiltrations, immune functions, and checkpoints, especially with some m6A methylation regulators in BLCA. In sum, downregulation of PTCD1 expression may be involved in the development of BLCA and remarkably correlated with poor prognosis. Meantime, it showed an influence in immune cell infiltration and may serve as an agreeable prognostic indicator in BLCA.
Project description:We found microRNA-133b (miR-133b) was downregulated in urothelial carcinoma of the bladder (UCB) tissues, and it could inhibit the proliferation and induce apoptosis in UCB cells. Consequently, we intend to explore the clinical significance of miR-133b in UCB patients. Expression of miR-133b in 146 UCB specimens and matched adjacent non-neoplastic bladder tissues were measured by quantitative real-time polymerase chain reaction. The overall survival (OS) curve and progression-free survival (PFS) curve were plotted using the Kaplan-Meier method. Prognostic factors for OS and PFS were identified by univariate and multivariate analyses using the Cox proportional hazards regression model. The expression of miR-133b was significantly downregulated in UCB tissues compared with those in adjacent non-neoplastic bladder tissues (P < 0.001). Among UCB patients, low expression of miR-133b significantly correlated with aggressive clinicopathological features. Multivariate analysis indicated that the expression of miR-133b was the independent prognostic factors for predicting PFS (RR: 2.97; 95% CI: 1.78-6.44; P = 0.009) and OS (RR: 4.23; 95% CI: 1.51-11.8; P = 0.011) in patients with UCB. Our study demonstrated that downregulation of miR-133b associated with aggressive clinicopathological features and predicted unfavorable prognosis in patients with UCB, might serve as feasible biomarker for clinical outcome of UCB patients after surgery and potential therapeutic target in the future.
Project description:BackgroundUrothelial bladder cancer is most frequently diagnosed at the non-muscle-invasive stage (NMIBC). However, recurrences and interventions for intermediate and high-risk NMIBC patients impact the quality of life. Biomarkers for patient stratification could help to avoid unnecessary interventions whilst indicating aggressive measures when required.MethodsIn this study, immuno-oncology focused, multiplexed proximity extension assays were utilised to analyse plasma (n = 90) and urine (n = 40) samples from 90 newly-diagnosed and treatment-naïve bladder cancer patients. Public single-cell RNA-sequencing and microarray data from patient tumour tissues and murine OH-BBN-induced urothelial carcinomas were also explored to further corroborate the proteomic findings.ResultsPlasma from muscle-invasive, urothelial bladder cancer patients displayed higher levels of MMP7 (p = 0.028) and CCL23 (p = 0.03) compared to NMIBC patients, whereas urine displayed higher levels of CD27 (p = 0.044) and CD40 (p = 0.04) in the NMIBC group by two-sided Wilcoxon rank-sum tests. Random forest survival and multivariable regression analyses identified increased MMP12 plasma levels as an independent marker (p < 0.001) associated with shorter overall survival (HR = 1.8, p < 0.001, 95% CI:1.3-2.5); this finding was validated in an independent patient OLINK cohort, but could not be established using a transcriptomic microarray dataset. Single-cell transcriptomics analyses indicated tumour-infiltrating macrophages as a putative source of MMP12.ConclusionsThe measurable levels of tumour-localised, immune-cell-derived MMP12 in blood suggest MMP12 as an important biomarker that could complement histopathology-based risk stratification. As MMP12 stems from infiltrating immune cells rather than the tumor cells themselves, analyses performed on tissue biopsy material risk a biased selection of biomarkers produced by the tumour, while ignoring the surrounding microenvironment.
Project description:Urothelial carcinoma (UC), arising from the urothelium of the urinary tract, can occur in the upper (UTUC) and the urinary bladder (UBUC). A representative molecular aberration for UC characteristics and prognosis remains unclear. Data mining of Gene Expression Omnibus focusing on UBUC, we identified sulfatase-1 (SULF1) upregulation is associated with UC progression. SULF1 controls the sulfation status of heparan sulfate proteoglycans and plays a role in tumor growth and metastasis, while its role is unexplored in UC. To first elucidate the clinical significance of SULF1 transcript expression, real-time quantitative RT-PCR was performed in a pilot study of 24 UTUC and 24 UBUC fresh samples. We identified that increased SULF1 transcript abundance was associated with higher primary tumor (pT) status. By testing SULF1 immunoexpression in independent UTUC and UBUC cohorts consisted of 340 and 295 cases, respectively, high SULF1 expression was significantly associated with advanced pT and nodal status, higher histological grade and presence of vascular invasion in both UTUC and UBUC. In multivariate survival analyses, high SULF1 expression was independently associated with worse DSS (UTUC hazard ratio [HR] = 3.574, P < 0.001; UBUC HR = 2.523, P = 0.011) and MeFS (UTUC HR = 3.233, P < 0.001; UBUC HR = 1.851, P = 0.021). Furthermore, depletion of SULF1 expression by using RNA interference leaded to impaired cell proliferative, migratory, and invasive abilities in vitro. In addition, we further confirmed oncogenic role of SULF1 with gain-of function experiments. In conclusion, our findings implicate the oncogenic role of SULF1 expression in UC, suggesting SULF1 as a prognostic and therapeutic target of UC.
Project description:BACKGROUND: Membranous expression of the anti-adhesive glycoprotein podocalyxin-like (PODXL) has previously been found to correlate with poor prognosis in several major cancer forms. Here we examined the prognostic impact of PODXL expression in urothelial bladder cancer. METHODS: Immunohistochemical PODXL expression was examined in tissue microarrays with tumours from two independent cohorts of patients with urothelial bladder cancer: n=100 (Cohort I) and n=343 (Cohort II). The impact of PODXL expression on disease-specific survival (DSS; Cohort II), 5-year overall survival (OS; both cohorts) and 2-year progression-free survival (PFS; Cohort II) was assessed. RESULTS: Membranous PODXL expression was significantly associated with more advanced tumour (T) stage and high-grade tumours in both cohorts, and a significantly reduced 5-year OS (unadjusted HR=2.25 in Cohort I and 3.10 in Cohort II, adjusted HR=2.05 in Cohort I and 2.18 in Cohort II) and DSS (unadjusted HR=4.36, adjusted HR=2.70). In patients with Ta and T1 tumours, membranous PODXL expression was an independent predictor of a reduced 2-year PFS (unadjusted HR=6.19, adjusted HR=4.60) and DSS (unadjusted HR=8.34, adjusted HR=7.16). CONCLUSION: Membranous PODXL expression is an independent risk factor for progressive disease and death in patients with urothelial bladder cancer.
Project description:Epithelial membrane protein 1 (EMP1) is a key gene that regulates cell proliferation and metastatic capability in various types of cancer, and serves an important role in tumor-immune interactions. However, the association between EMP1 and clinical prognosis, as well as the presence of tumor-infiltrating lymphocytes in bladder urothelial carcinoma (BLCA) remains unclear. The present study aimed to explore the relationship between EMP1 expression and tumor immune cell infiltration in BLCA. In the present study, EMP1 expression in BLCA was analyzed using the Oncomine database, The Cancer Genome Atlas (TCGA) and the Tumor Immune Estimation Resource (TIMER). The effects of EMP1 on clinical prognosis were evaluated using the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis. The correlations between EMP1, cancer immune infiltrates and lymphocyte abundance were determined using the TIMER and Tumor immune system interaction database. In addition, correlations between EMP1 expression and gene markers in immune infiltrates were analyzed using cBioportal. The results demonstrated that, compared with adjacent normal tissues, EMP1 was downregulated in BLCA tissues. High expression of EMP1 was significantly associated with poor overall survival (OS) in BLCA cases obtained from TCGA. Multivariate Cox analysis revealed that EMP1 was an independent predictor of OS in patients with BLCA. Gene set enrichment analysis revealed that EMP1 was associated with cancer-related pathways and was positively correlated with the levels of infiltrating CD8+ T cells, macrophages, neutrophils and dendritic cells in BLCA. Further analysis demonstrated that EMP1 was significantly associated with the enrichment of multiple types of lymphocyte. EMP1 expression exhibited a strong correlation with a range of immune markers in BLCA. In conclusion, the results of the present study demonstrated that EMP1 was associated with a poor prognosis in patients with BLCA, and that the levels of immune infiltration and multiple immunomarker groups were associated with EMP1 expression. These results suggested that EMP1 may be used as a predictive biomarker to determine the prognosis and immune infiltration in BLCA.