Project description:The genetic basis of schizophrenia has been a hotly debated research topic for decades, yet recent studies, especially in the past year, have confirmed genetics as the major cause of this complex condition. Psychiatry has come of age: it is perhaps more difficult for the current generation of psychiatrists, to comprehend how the biological root of the condition could have been denied for so long. Here we review how highly collaborative global efforts to pool samples, utilise the very latest advances in genotyping and high throughput sequencing technologies, and application of robust statistical analysis have reaped phenomenal rewards. The major findings are that schizophrenia is a highly polygenic disorder with a complex array of risk loci, many include genes implicated also in intellectual disability, autism spectrum disorders, bipolar disorder and major depressive disorder. These candidate genes converge on key neuronal signalling pathways identifying novel targets for potential future therapeutic intervention.
Project description:Recent years have seen an explosive growth of interest in the application of imaging genetics to understand neurogenetic mechanisms of schizophrenia. Imaging genetics applies structural and functional neuroimaging to study subjects carrying genetic risk variants that relate to a psychiatric disorder. We review selected aspects of this literature, starting with a widely studied candidate gene--the catechol-O-methyltransferase gene (COMT)--discussing other candidate genes in the dopaminergic system, and then discussing variants with genome-wide support. In future perspectives, approaches to characterize epistatic effects, the identification of new risk genes through forward-genetic approaches using imaging phenotypes, and the study of rare structural variants are considered.
Project description:A comprehensive review of the body of genetic studies on schizophrenia seems even more daunting than the battle a psychiatrist wages daily in the office with her archenemy of a thousand faces. The following article reunites some genetic, epigenetic and environmental factors of schizophrenia from revered and vast studies in a chronological and progressive fashion. Twin studies set the basics of heritability and a particular study by Davis and Phelps considers the widely ignored influence of prenatal environment in the development of schizophrenia. Mostly ignited by linkage studies, candidate gene studies explore further by fine-mapping the hypothesized variants [mostly in the forms single nucleotide polymorphisms (SNPs) and less but with greater impact copy number variations (CNVs)] associated with the disease. Genome-wide association studies (GWAS) increase considerably the sample sizes and thus the validity of the results, while the next-generation sequencing (NGS) attain the highest yet unreplicated level of validity results.
Project description:There is consistent evidence that the principal etiology of schizophrenia involves predisposing genetic factors. Recent years have seen several new insights in the genetics of schizophrenia. Several chromosomal regions show significant evidence that they contain schizophrenia susceptibility genes. A clinically relevant genetic subtype of schizophrenia (22q deletion syndrome) has been identified. There is new evidence that spontaneous mutations may play a role. There are new recommendations for genetic counseling. The progress to date suggests that understanding of a neurodevelopmental pathway from genetic susceptibility to schizophrenia will soon be fundamentally altered by molecular genetic advances in this complex disease.
Project description:Deficits in learning and memory are among the most robust correlates of schizophrenia. It has been hypothesized that these deficits are in part due to reduced conscious recollection and increased reliance on familiarity assessment as a basis for retrieval. The Remember-Know (R-K) paradigm was administered to 35 patients with chronic schizophrenia and 35 healthy controls. In addition to making "remember" and "know" judgments, the participants were asked to make forced-choice recognition judgments with regard to details about the learning episode. Analyses comparing response types showed a significant reduction in "remember" responses and a significant increase in "know" responses in schizophrenia patients relative to controls. Both patients and controls recalled more details of the learning episode for "remember" compared to "know" responses, although, in particular for "remember" responses, patients recalled fewer details compared with controls. Notably, patients recognized fewer inter-item but not intra-item stimulus features compared with controls. These findings suggest deficits in organizing and integrating relational information during the learning episode and/or using relational information for retrieval. A Dual-Process Signal Detection interpretation of these findings suggests that recollection in chronic schizophrenia is significantly reduced, while familiarity is not. Additionally, a unidimensional Signal Detection Theory interpretation suggests that chronic schizophrenia patients show a reduction in memory strength, and an altered criterion on the memory strength distribution for detecting new compared with old stimuli but not for detecting stimuli that are remembered versus familiar. Taken together, these findings are consistent with a deficit in recollection and increased reliance on familiarity in making recognition memory judgments in chronic schizophrenia.
Project description:Purpose of reviewEnormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity.Recent findingsRecent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Project description:The genetic etiology of schizophrenia, a common and debilitating psychiatric disorder, is supported by a wealth of data. Review of the current findings suggests that considerable progress has been made in recent years, with a number of chromosomal regions consistently implicated by linkage analysis. Three groups have shown linkage to 1q21-22 using similar models, with HLOD scores of 6.5, 3.2, and 2.4. Other replicated loci include 13q32 that has been implicated by two independent groups with significant HLOD scores (4.42) or NPL values (4.18), and 5pl4.1-13.1, 5q21-33, 8p2l-22, and 10p11-15, each of which have been reported as suggestive by at least three separate groups. Different studies have also replicated evidence for a modest number of candidate genes that were not ascertained through linkage. Of these, the greatest support exists for the DRD3 (3q13.3), HTR2A (13q14.2), and CHRNA7 (15q13-q14) genes. The refinement of phenotypes, the use of endophenotypes, reduction of heterogeneity, and extensive genetic mapping have all contributed to this progress. The rapid expansion of information from the human genome project will likely further accelerate this progress and assist in the discovery of susceptibility genes for schizophrenia. A greater understanding of disease mechanisms and the application of pharmacogenetics should also lead to improvements in therapeutic interventions.
Project description:The last decade brought tremendous progress in the field of schizophrenia genetics. As a result of extensive collaborations and multiple technological advances, we now recognize many types of genetic variants that increase the risk. These include large copy number variants, rare coding inherited and de novο variants, and over 100 loci harboring common risk variants. While the type and contribution to the risk vary among genetic variants, there is concordance in the functions of genes they implicate, such as those whose RNA binds the fragile X-related protein FMRP and members of the activity-regulated cytoskeletal complex involved in learning and memory. Gene expression studies add important information on the biology of the disease and recapitulate the same functional gene groups. Studies of alternative phenotypes help us widen our understanding of the genetic architecture of mental function and dysfunction, how diseases overlap not only with each other but also with non-disease phenotypes. The challenge is to apply this new knowledge to prevention and treatment and help patients. The data generated so far and emerging technologies, including new methods in cell engineering, offer significant promise that in the next decade we will unlock the translational potential of these significant discoveries.
Project description:Schizophrenia (SZ) is a common disorder that runs in families. It has a relatively high heritability, i.e., inherited factors account for the major proportion of its etiology. The high heritability has motivated gene mapping studies that have improved in sophistication through the past two decades. Belying earlier expectations, it is now becoming increasingly clear that the cause of SZ does not reside in a single mutation, or even in a single gene. Rather, there are multiple DNA variants, not all of which have been identified. Additional risk may be conferred by interactions between individual DNA variants, as well as 'gene-environment' interactions. We review studies that have accounted for a fraction of the heritability. Their relevance to the practising clinician is discussed. We propose that continuing research in DNA variation, in conjunction with rapid ongoing advances in allied fields, will yield dividends from the perspective of diagnosis, treatment prediction through pharmacogenetics, and rational treatment through discoveries in pathogenesis.
Project description:Schizophrenia is a complex psychiatric disorder characterized by the presence of positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In the present paper, we will review the current understanding of molecular dysregulation in schizophrenia, including genetic and epigenetic studies. In relation to the latter, basic research suggests that normal cognition is regulated by epigenetic mechanisms and its dysfunction occurs upon epigenetic misregulation, providing new insights into missing heritability of complex psychiatric diseases, referring to the discrepancy between epidemiological heritability and the proportion of phenotypic variation explained by DNA sequence difference. In schizophrenia the absence of consistently replicated genetic effects together with evidence for lasting changes in gene expression after environmental exposures suggest a role of epigenetic mechanisms. In this review we will focus on epigenetic modifications as a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of psychotic conditions throughout life.