Unknown

Dataset Information

0

Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos.


ABSTRACT: Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on "guilt-by-association" relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

SUBMITTER: Collakova E 

PROVIDER: S-EPMC3901275 | biostudies-literature | 2013 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max) Embryos.

Collakova Eva E   Aghamirzaie Delasa D   Fang Yihui Y   Klumas Curtis C   Tabataba Farzaneh F   Kakumanu Akshay A   Myers Elijah E   Heath Lenwood S LS   Grene Ruth R  

Metabolites 20130514 2


Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential me  ...[more]

Similar Datasets

2013-12-13 | GSE46153 | GEO
2013-12-13 | E-GEOD-46153 | biostudies-arrayexpress
| S-EPMC4009788 | biostudies-literature
| S-EPMC8313137 | biostudies-literature
| S-EPMC4263021 | biostudies-literature
| S-EPMC8535314 | biostudies-literature
2020-05-09 | GSE150157 | GEO
| S-EPMC2660330 | biostudies-literature
| S-EPMC7283522 | biostudies-literature
| S-EPMC8539317 | biostudies-literature