Ontology highlight
ABSTRACT: Background
Although Sox2 expression has been found in several types of cancer, it has not yet been used to identify or isolate CSCs in somatic carcinoma.Methods
SiHa and C33A cells stably transfected with a plasmid containing human Sox2 transcriptional elements driving the enhanced green fluorescent protein (EGFP) reporter were sorted into the Sox2-positive and the Sox2-negative populations by FACS, and Sox2 expression was detected by western blot and immunohistochemistry. The differentiation, self-renewal and tumor formation abilities, as well as the expression of the stemness and the EMT related genes of the Sox2-positive and the Sox2-negative cervical cancer cells were characterized in vitro and in vivo.Results
A pSox2/EGFP system was used to separate the Sox2-positive and the Sox2-negative cells from cervical cancer cell lines, SiHa and C33A cells. Compared with the Sox2-negative cells, the Sox2-positive SiHa and C33A cells exhibited greater capacities for self-renewal, differentiation and tumor formation. Furthermore, Sox2-positive SiHa and C33A cells expressed higher levels of stemness-related genes, such as Sox2/Bmi-1/Oct4/ALDH1, and EMT-related genes, such as vimentin/snail/β-catenin. Taken together, all these results indicated that cells expressing endogenous Sox2 are CSCs in cervical carcinomas.Conclusion
This study is the first to establish a functional link between endogenous Sox2 expression and CSCs in cervical carcinomas. Additionally, this study demonstrated that it is feasible to develop a tool to isolate CSCs from somatic tumors based on the expression of the endogenous nuclear protein Sox2 instead of cell surface markers.
SUBMITTER: Liu XF
PROVIDER: S-EPMC3904967 | biostudies-literature |
REPOSITORIES: biostudies-literature