Unknown

Dataset Information

0

Combining heterogenous data for prediction of disease related and pharmacogenes.


ABSTRACT: Identifying genetic variants that affect drug response or play a role in disease is an important task for clinicians and researchers. Before individual variants can be explored efficiently for effect on drug response or disease relationships, specific candidate genes must be identified. While many methods rank candidate genes through the use of sequence features and network topology, only a few exploit the information contained in the biomedical literature. In this work, we train and test a classifier on known pharmacogenes from PharmGKB and present a classifier that predicts pharmacogenes on a genome-wide scale using only Gene Ontology annotations and simple features mined from the biomedical literature. Performance of F=0.86, AUC=0.860 is achieved. The top 10 predicted genes are analyzed. Additionally, a set of enriched pharmacogenic Gene Ontology concepts is produced.

SUBMITTER: Funk CS 

PROVIDER: S-EPMC3910248 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Combining heterogenous data for prediction of disease related and pharmacogenes.

Funk Christopher S CS   Hunter Lawrence E LE   Cohen K Bretonnel KB  

Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing 20140101


Identifying genetic variants that affect drug response or play a role in disease is an important task for clinicians and researchers. Before individual variants can be explored efficiently for effect on drug response or disease relationships, specific candidate genes must be identified. While many methods rank candidate genes through the use of sequence features and network topology, only a few exploit the information contained in the biomedical literature. In this work, we train and test a clas  ...[more]

Similar Datasets

| S-EPMC5399403 | biostudies-literature
| S-EPMC5699027 | biostudies-literature
| S-EPMC4512918 | biostudies-literature
| S-EPMC10014658 | biostudies-literature
| S-EPMC5010878 | biostudies-literature
| S-EPMC7746618 | biostudies-literature
| S-EPMC8344190 | biostudies-literature
| S-EPMC4338540 | biostudies-literature
| S-EPMC2680896 | biostudies-other
| S-EPMC7416628 | biostudies-literature