Mechanism of HIV-1 neutralization by antibodies targeting a membrane-proximal region of gp41.
Ontology highlight
ABSTRACT: Induction of broadly neutralizing antibodies (bNAbs) is an important goal for HIV-1 vaccine development. Two autoreactive bNAbs, 2F5 and 4E10, recognize a conserved region on the HIV-1 envelope glycoprotein gp41 adjacent to the viral membrane known as the membrane-proximal external region (MPER). They block viral infection by targeting a fusion-intermediate conformation of gp41, assisted by an additional interaction with the viral membrane. Another MPER-specific antibody, 10E8, has recently been reported to neutralize HIV-1 with potency and breadth much greater than those of 2F5 or 4E10, but it appeared not to bind phospholipids and might target the untriggered envelope spikes, raising the hope that the MPER could be harnessed for vaccine design without major immunological concerns. Here, we show by three independent approaches that 10E8 indeed binds lipid bilayers through two hydrophobic residues in its CDR H3 (third heavy-chain complementarity-determining region). Its weak affinity for membranes in general and preference for cholesterol-rich membranes may account for its great neutralization potency, as it is less likely than other MPER-specific antibodies to bind cellular membranes nonspecifically. 10E8 binds with high affinity to a construct mimicking the fusion intermediate of gp41 but fails to recognize the envelope trimers representing the untriggered conformation. Moreover, we can improve the potency of 4E10 without affecting its binding to gp41 by a modification of its lipid-interacting CDR H3. These results reveal a general mechanism of HIV-1 neutralization by MPER-specific antibodies that involves interactions with viral lipids.
SUBMITTER: Chen J
PROVIDER: S-EPMC3911647 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA