Unknown

Dataset Information

0

A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts.


ABSTRACT: Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts.Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed between proliferating and quiescent fibroblasts. Fibroblasts induced into quiescence by contact inhibition or serum starvation had similar microRNA profiles, indicating common changes induced by distinct quiescence signals. By analyzing the gene expression patterns of microRNA target genes with quiescence, we discovered a strong regulatory function for miR-29, which is downregulated with quiescence. Using microarrays and immunoblotting, we confirmed that miR-29 targets genes encoding collagen and other extracellular matrix proteins and that those target genes are induced in quiescence. In addition, overexpression of miR-29 resulted in more rapid cell cycle re-entry from quiescence. We also found that let-7 and miR-125 were upregulated in quiescent cells. Overexpression of either one alone resulted in slower cell cycle re-entry from quiescence, while the combination of both together slowed cell cycle re-entry even further.microRNAs regulate key aspects of fibroblast quiescence including the proliferative state of the cells as well as their gene expression profiles, in particular, the induction of extracellular matrix proteins in quiescent fibroblasts.

SUBMITTER: Suh EJ 

PROVIDER: S-EPMC3924601 | biostudies-literature | 2012 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts.

Suh Eric J EJ   Remillard Matthew Y MY   Legesse-Miller Aster A   Johnson Elizabeth L EL   Lemons Johanna M S JM   Chapman Talia R TR   Forman Joshua J JJ   Kojima Mina M   Silberman Eric S ES   Coller Hilary A HA  

Genome biology 20121222 12


<h4>Background</h4>Although quiescence (reversible cell cycle arrest) is a key part in the life history and fate of many mammalian cell types, the mechanisms of gene regulation in quiescent cells are poorly understood. We sought to clarify the role of microRNAs as regulators of the cellular functions of quiescent human fibroblasts.<h4>Results</h4>Using microarrays, we discovered that the expression of the majority of profiled microRNAs differed between proliferating and quiescent fibroblasts. Fi  ...[more]

Similar Datasets

2012-12-05 | E-GEOD-42614 | biostudies-arrayexpress
2012-12-05 | E-GEOD-42593 | biostudies-arrayexpress
2012-12-05 | E-GEOD-42613 | biostudies-arrayexpress
2012-12-05 | GSE42614 | GEO
2012-12-05 | GSE42613 | GEO
2012-12-05 | GSE42593 | GEO
| S-EPMC5176301 | biostudies-literature
2020-09-07 | PXD017585 | Pride
2023-11-13 | GSE247220 | GEO
| S-EPMC10923124 | biostudies-literature