Project description:Neutrophils play critical roles during the initial phase of hepatic ischemia/reperfusion injury (HIRI). However, the regulation of neutrophil activation, infiltration, and proinflammatory cytokine secretion has not been fully elucidated. In this study, we revealed that OX40 was expressed by neutrophils, its expression in neutrophils was time-dependently upregulated following HIRI, and Ox40 knockout markedly alleviated liver injury. Compared with wild-type neutrophils, the adoptive transfer of Ox40-/- neutrophils decreased HIRI in neutrophil-depleted Rag2/Il2rg-/- or Ox40-/- mice. Moreover, consistently, the in vitro experiments showed that Ox40 not only prolonged neutrophil survival but also promoted proinflammatory cytokines, ROS production, and even neutrophil chemotaxis. Further investigation demonstrated that the knockout of Ox40 in neutrophils inhibited NF-κB signaling via the TRAF1/2/4 and IKKα/IKKβ/IκBα pathways. OX40L and OX86 stimulation could enhance neutrophil activation and survival in vitro and in vivo. In conclusion, our study provides a new understanding of OX40, which is expressed not only in adaptive immune cells but also in innate immune cells, i.e., neutrophils, contributing to the activation and survival of neutrophils. These findings provide a novel potential therapeutic target for the prevention of HIRI during liver transplantation or hepatic surgery.
Project description:The IL-23/IL-17 and IL-12/IFN-gamma cytokine pathways have a role in chronic autoimmunity, which is considered mainly a dysfunction of adaptive immunity. The extent to which they contribute to innate immunity is, however, unknown. We used a mouse model of acute kidney ischemia-reperfusion injury (IRI) to test the hypothesis that early production of IL-23 and IL-12 following IRI activates downstream IL-17 and IFN-gamma signaling pathways and promotes kidney inflammation. Deficiency in IL-23, IL-17A, or IL-17 receptor (IL-17R) and mAb neutralization of CXCR2, the p19 subunit of IL-23, or IL-17A attenuated neutrophil infiltration in acute kidney IRI in mice. We further demonstrate that IL-17A produced by GR-1+ neutrophils was critical for kidney IRI in mice. Activation of the IL-12/IFN-gamma pathway and NKT cells by administering alpha-galactosylceramide-primed bone marrow-derived DCs increased IFN-gamma production following moderate IRI in WT mice but did not exacerbate injury or enhance IFN-gamma production in either Il17a-/- or Il17r-/- mice, which suggested that IL-17 signaling was proximal to IFN-gamma signaling. This was confirmed by the finding that IFN-gamma administration reversed the protection seen in Il17a-/- mice subjected to IRI, whereas IL-17A failed to reverse protection in Ifng-/- mice. These results demonstrate that the innate immune component of kidney IRI requires dual activation of the IL-12/IFN-gamma and IL-23/IL-17 signaling pathways and that neutrophil production of IL-17A is upstream of IL-12/IFN-gamma. These mechanisms might contribute to reperfusion injury in other organs.
Project description:RationaleWe recently implicated a role for CD4(+) T cells and demonstrated elevated IL-17A expression in lung ischemia-reperfusion (IR) injury. However, identification of the specific subset of CD4(+) T cells and their mechanistic role in IR injury remains unknown.ObjectivesWe tested the hypothesis that invariant natural killer T (iNKT) cells mediate lung IR injury via IL-17A signaling.MethodsMice underwent lung IR via left hilar ligation. Pulmonary function was measured using an isolated lung system. Lung injury was assessed by measuring edema (wet/dry weight) and vascular permeability (Evans blue dye). Inflammation was assessed by measuring proinflammatory cytokines in lungs, and neutrophil infiltration was measured by immunohistochemistry and myeloperoxidase levels.Measurements and main resultsPulmonary dysfunction (increased airway resistance and pulmonary artery pressure and decreased pulmonary compliance), injury (edema, vascular permeability), and inflammation (elevated IL-17A; IL-6; tumor necrosis factor-?; monocyte chemotactic protein-1; keratinocyte-derived chemokine; regulated upon activation, normal T-cell expressed and secreted; and neutrophil infiltration) after IR were attenuated in IL-17A(-/-) and Rag-1(-/-) mice. Anti-IL-17A antibody attenuated lung dysfunction in wild-type mice after IR. Reconstitution of Rag-1(-/-) mice with wild-type, but not IL-17A(-/-), CD4(+) T cells restored lung dysfunction, injury, and inflammation after IR. Lung dysfunction, injury, IL-17A expression, and neutrophil infiltration were attenuated in J?18(-/-) mice after IR, all of which were restored by reconstitution with wild-type, but not IL-17A(-/-), iNKT cells. Flow cytometry and enzyme-linked immunosorbent spot assay confirmed IL-17A production by iNKT cells after IR.ConclusionsThese results demonstrate that CD4(+) iNKT cells play a pivotal role in initiating lung injury, inflammation, and neutrophil recruitment after IR via an IL-17A-dependent mechanism.
Project description:Hepatic ischemia-reperfusion injury (HIRI) is a major complication of liver resection or liver transplantation that can seriously affect patient's prognosis. There is currently no definitive and effective treatment strategy for HIRI. Autophagy is an intracellular self-digestion pathway initiated to remove damaged organelles and proteins, which maintains cell survival, differentiation, and homeostasis. Recent studies have shown that autophagy is involved in the regulation of HIRI. Numerous drugs and treatments can change the outcome of HIRI by controlling the pathways of autophagy. This review mainly discusses the occurrence and development of autophagy, the selection of experimental models for HIRI, and the specific regulatory pathways of autophagy in HIRI. Autophagy has considerable potential in the treatment of HIRI.
Project description:Hepatic ischemia-reperfusion injury (HIRI) elicits an immune-inflammatory response that may result in hepatocyte necrosis and apoptosis, ultimately culminating in postoperative hepatic dysfunction and hepatic failure. The precise mechanisms governing the pathophysiology of HIRI remain incompletely understood, necessitating further investigation into key molecules and pathways implicated in disease progression to guide drug discovery and potential therapeutic interventions. Gene microarray data was downloaded from the GEO expression profile database. Integrated bioinformatic analyses were performed to identify HIRI signature genes, which were subsequently validated for expression levels and diagnostic efficacy. Finally, the gene expression was verified in an experimental HIRI model and the effect of anti-IL17A antibody intervention in three time points (including pre-ischemic, post-ischemic, and at 1 h of reperfusion) on HIRI and the expression of these genes was investigated. Bioinformatic analyses of the screened characterized genes revealed that inflammation, immune response, and cell death modulation were significantly associated with HIRI pathophysiology. CCL2, BTG2, GADD45A, FOS, CXCL10, TNFRSF12A, and IL-17 pathway were identified as key components involved in the HIRI. Serum and liver IL-17A expression were significantly upregulated during the initial phase of HIRI. Pretreatment with anti-IL-17A antibody effectively alleviated the damage of liver tissue, suppressed inflammatory factors, and serum transaminase levels, and downregulated the mRNA expression of CCL2, GADD45A, FOS, CXCL10, and TNFRSF12A. Injection of anti-IL17A antibody after ischemia and at 1 h of reperfusion failed to demonstrate anti-inflammatory and attenuating HIRI benefits relative to earlier intervention. Our study reveals that the IL-17 pathway and related genes may be involved in the proinflammatory mechanism of HIRI, which may provide a new perspective and theoretical basis for the prevention and treatment of HIRI.
Project description:Eosinophils are a myeloid cell subpopulation that mediates type 2 T helper cell immune responses. Unexpectedly, we identified a rapid accumulation of eosinophils in 22 human liver grafts after hepatic transplantation. In contrast, no eosinophils were detectable in healthy liver tissues before transplantation. Studies with two genetic mouse models of eosinophil deficiency and a mouse model of antibody-mediated eosinophil depletion revealed exacerbated liver injury after hepatic ischemia and reperfusion. Adoptive transfer of bone marrow-derived eosinophils normalized liver injury of eosinophil-deficient mice and reduced hepatic ischemia and reperfusion injury in wild-type mice. Mechanistic studies combining genetic and adoptive transfer approaches identified a critical role of suppression of tumorigenicity (ST2)-dependent production of interleukin-13 by eosinophils in the hepatoprotection against ischemia-reperfusion-induced injury. Together, these data provide insight into a mechanism of eosinophil-mediated liver protection that could serve as a therapeutic target to improve outcomes of patients undergoing liver transplantation.
Project description:Background:Hepatic ischemia and reperfusion (I/R) is common in liver surgery and transplantation and compromises postoperative liver function. Hepatic I/R injury is characterized by sterile inflammation that contributes to hepatocellular necrosis. Many immune cells and cytokines have been implicated in hepatic I/R injury. However, the role and relevance of IL-23 and IL-17A remains controversial in literature. Aim: To determine whether the IL-23/IL-17A signaling axis is activated in hepatic I/R using a triple-level experimental approach (in vitro, in vivo, and clinical). Methods:IL-23 and IL-17A were assayed by ELISA in the supernatant fractions of cultured murine (RAW 264.7) macrophages that were activated by supernatant fractions of necrotic cultured mouse (AML12) hepatocytes. Similarly, levels of these cytokines were determined in plasma samples and liver tissue of mice (N = 85) subjected to partial (70%) liver I/R. Finally, IL-23 and IL-17A were assayed in plasma samples obtained from a controlled cohort of liver resection patients who were either subjected to I/R (N = 27) or not (N = 13). Results:Activated macrophages did not produce IL-23 in response to supernatant of necrotic AML12 hepatocytes. IL-23 and IL-17A were not elevated in mice subjected hepatic I/R and were not elevated in serum from patients subjected to I/R during liver resection. Conclusion:IL-23 and IL-17A are not involved in hepatic I/R injury in mouse and man. Relevance for patients:If IL-23 and IL-17A were to mediate hepatocellular injury following I/R, these cytokines would constitute potential therapeutic targets. Since this study has revealed that IL-23 and IL-17A do not play a role in hepatic I/R, other pathways and therapeutic targets should be considered when developing modalities aimed at reducing hepatic I/R injury.
Project description:Hepatic ischemia-reperfusion injury (IRI) limits access to transplantation. Heme oxygenase-1 (HO-1) is a powerful antioxidant enzyme which degrades free heme into biliverdin, free iron and carbon monoxide. HO-1 and its metabolites have the ability to modulate a wide variety of inflammatory disorders including hepatic IRI. Mechanisms of this protective effect include reduction of oxygen free radicals, alteration of macrophage and T cell phenotype. Further work is required to understand the physiological importance of the many actions of HO-1 identified experimentally, and to harness the protective effect of HO-1 for therapeutic potential.
Project description:Hepatic ischemia-reperfusion injury (HIRI) is one of the major sources of mortality and morbidity associated with hepatic surgery. Ac2-26, a short peptide of Annexin A1 protein, has been proved to have a protective effect against IRI. However, whether it exerts a protective effect on HIRI has not been reported. The HIRI mice model and the oxidative damage model of H2O2-induced AML12 cells were established to investigate whether Ac2-26 could alleviate HIRI by regulating the activation of IL-22/IL-22R1/STAT3 signaling. The protective effect of Ac2-26 was measured by various biochemical parameters related to liver function, apoptosis, inflammatory reaction, mitochondrial function and the expressions of IL-22, IL-22R1, p-STAT3Tyr705. We discovered that Ac2-26 reduced the Suzuki score and cell death rate, and increased the cell viability after HIRI. Moreover, we unraveled that Ac2-26 significantly decreased the number of apoptotic hepatocytes, and the expressions of cleaved-caspase-3 and Bax/Bcl-2 ratio. Furthermore, HIRI increased the contents of malondialdehyde (MDA), NADP+/NADPH ratio and reactive oxygen species (ROS), whereas Ac2-26 decreased them significantly. Additionally, Ac2-26 remarkably alleviated mitochondria dysfunction, which was represented by an increase in the adenosine triphosphate (ATP) content and mitochondrial membrane potential, a decrease in mitochondrial DNA (mtDNA) damage. Finally, we revealed that Ac2-26 pretreatment could significantly inhibit the activation of IL-22/IL22R1/STAT3 signaling. In conclusion, this work demonstrated that Ac2-26 ameliorated HIRI by reducing oxidative stress and inhibiting the mitochondrial apoptosis pathway, which might be closely related to the inhibition of the IL-22/IL22R1/STAT3 signaling pathway.
Project description:BackgroundIL-17A and IL-17F are pro-inflammatory cytokines which induce the expression of several cytokines, chemokines and matrix metalloproteinases (MMPs) in target cells. IL-17 cytokines have recently attracted huge interest due to their pathogenic role in diseases such as arthritis and inflammatory bowel disease although a role for IL-17 cytokines in myocardial infarction (MI) has not previously been described.MethodsIn vivo MI was performed by coronary artery occlusion in the absence or presence of a neutralizing IL-17 antibody for blocking IL-17 actions in vivo. IL-17 signaling was also assessed in isolated primary cardiomyocytes by Western blot, mRNA expression and immunostaining.ResultsExpression of IL-17A, IL-17F and the IL-17 receptor (IL-17RA) were all increased following MI. Expression of several IL-17 target genes, including Cxcl1, Cxcl2, IL-1β, iNOS and IL-6 was also upregulated following MI. In addition, IL-17A promoted the expression of Cxcl1 and IL-6 in isolated cardiomyocytes in a MAPK and PI(3)K-dependent manner. IL-17A and ischaemia/reperfusion (I/R) injury were found to have an additive effect on Cxcl1 expression, suggesting that IL-17 may enhance myocardial neutrophil recruitment during MI. Moreover, protein levels of both IL-17R and IL-17A were enhanced following in vivo MI. Finally, blocking IL-17 signaling in vivo reduced the levels of apoptotic cell death markers following in vivo MI.ConclusionsThese data imply that the expression of IL-17 cytokines and their receptor are elevated during myocardial I/R injury and may play a fundamental role in post infarct inflammatory and apoptotic responses.