Ontology highlight
ABSTRACT: Background
The area under the receiver operating characteristic (ROC) curve, referred to as the AUC, is an appropriate measure for describing the overall accuracy of a diagnostic test or a biomarker in early phase trials without having to choose a threshold. There are many approaches for estimating the confidence interval for the AUC. However, all are relatively complicated to implement. Furthermore, many approaches perform poorly for large AUC values or small sample sizes.Methods
The AUC is actually a probability. So we propose a modified Wald interval for a single proportion, which can be calculated on a pocket calculator. We performed a simulation study to compare this modified Wald interval (without and with continuity correction) with other intervals regarding coverage probability and statistical power.Results
The main result is that the proposed modified Wald intervals maintain and exploit the type I error much better than the intervals of Agresti-Coull, Wilson, and Clopper-Pearson. The interval suggested by Bamber, the Mann-Whitney interval without transformation and also the interval of the binormal AUC are very liberal. For small sample sizes the Wald interval with continuity has a comparable coverage probability as the LT interval and higher power. For large sample sizes the results of the LT interval and of the Wald interval without continuity correction are comparable.Conclusions
If individual patient data is not available, but only the estimated AUC and the total sample size, the modified Wald intervals can be recommended as confidence intervals for the AUC. For small sample sizes the continuity correction should be used.
SUBMITTER: Kottas M
PROVIDER: S-EPMC3938139 | biostudies-literature | 2014 Feb
REPOSITORIES: biostudies-literature
Kottas Martina M Kuss Oliver O Zapf Antonia A
BMC medical research methodology 20140219
<h4>Background</h4>The area under the receiver operating characteristic (ROC) curve, referred to as the AUC, is an appropriate measure for describing the overall accuracy of a diagnostic test or a biomarker in early phase trials without having to choose a threshold. There are many approaches for estimating the confidence interval for the AUC. However, all are relatively complicated to implement. Furthermore, many approaches perform poorly for large AUC values or small sample sizes.<h4>Methods</h ...[more]