Cross-talk between diverse serine integrases.
Ontology highlight
ABSTRACT: Phage-encoded serine integrases are large serine recombinases that mediate integrative and excisive site-specific recombination of temperate phage genomes. They are well suited for use in heterologous systems and for synthetic genetic circuits as the attP and attB attachment sites are small (<50 bp), there are no host factor or DNA supercoiling requirements, and they are strongly directional, doing only excisive recombination in the presence of a recombination directionality factor. Combining different recombinases that function independently and without cross-talk to construct complex synthetic circuits is desirable, and several different serine integrases are available. However, we show here that these functions are not reliably predictable, and we describe a pair of serine integrases encoded by mycobacteriophages Bxz2 and Peaches with unusual and unpredictable specificities. The integrases share only 59% amino acid sequence identity and the attP sites have fewer than 50% shared bases, but they use the same attB site and there is non-reciprocal cross-talk between the two systems. The DNA binding specificities do not result from differences in specific DNA contacts but from the constraints imposed by the configuration of the component half-sites within each of the attachment site DNAs.
SUBMITTER: Singh S
PROVIDER: S-EPMC3947336 | biostudies-literature | 2014 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA