Ontology highlight
ABSTRACT: Background
Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management.Methods and results
We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls) from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (?AUC) and by risk reclassification (Net Reclassification Improvement (NRI) and Integrated Discrimination Improvement (IDI)). Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH) improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification.Conclusions
Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.
SUBMITTER: van Schalkwijk DB
PROVIDER: S-EPMC3965475 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
van Schalkwijk Daniël B DB de Graaf Albert A AA Tsivtsivadze Evgeni E Parnell Laurence D LD van der Werff-van der Vat Bianca J C BJ van Ommen Ben B van der Greef Jan J Ordovás José M JM
PloS one 20140325 3
<h4>Background</h4>Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management.<h4>Methods and results</h4>We calculated lipoprotein metabolism indicators fo ...[more]