Unknown

Dataset Information

0

Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle.


ABSTRACT: Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal muscle SR microsomes as well as the function of RyRs in planar bilayers. The effects of these alkaloids on [(3)H]ryanodine binding and SR Ca(2+) ATPase (SERCA) activity were also tested. MBED (1-5 ?M) fully mimicked maximal activating effects of caffeine (20 mM) on SR Ca(2+) leak. At the single-channel level, MBED mimicked the agonistic action of caffeine on cardiac RyR gating (i.e., stabilized long openings characteristic of "high-open-probability" mode). EuD was a partial agonist at the maximal doses tested. The tested Pen derivatives displayed mild to no agonism on RyRs, SR Ca(2+) leak, or [(3)H]ryanodine binding studies. Unlike caffeine, EuD and some Pen derivatives significantly inhibited SERCA at concentrations required to modulate RyRs. Instead, MBED's affinity for RyRs (EC50 ? 0.5 ?M) was much larger than for SERCA (IC50 > 285 ?M). In conclusion, MBED is a potent RyR agonist and, potentially, a better choice than caffeine for microsomal and cell studies due to its reported lack of effects on adenosine receptors and phosphodiesterases. As a high-affinity caffeine-like probe, MBED could also help identify the caffeine-binding site in RyRs.

SUBMITTER: Diaz-Sylvester PL 

PROVIDER: S-EPMC3965891 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Eudistomin D and penaresin derivatives as modulators of ryanodine receptor channels and sarcoplasmic reticulum Ca2+ ATPase in striated muscle.

Diaz-Sylvester Paula L PL   Porta Maura M   Juettner Vanessa V VV   Lv Yuanzhao Y   Fleischer Sidney S   Copello Julio A JA  

Molecular pharmacology 20140114 4


Eudistomin D (EuD) and penaresin (Pen) derivatives are bioactive alkaloids from marine sponges found to induce Ca(2+) release from striated muscle sarcoplasmic reticulum (SR). Although these alkaloids are believed to affect ryanodine receptor (RyR) gating in a "caffeine-like" manner, no single-channel study confirmed this assumption. Here, EuD and MBED (9-methyl-7-bromoeudistomin D) were contrasted against caffeine on their ability to modulate the SR Ca(2+) loading/leak from cardiac and skeletal  ...[more]

Similar Datasets

| S-EPMC3624456 | biostudies-literature
| S-EPMC7961605 | biostudies-literature
| S-EPMC3274754 | biostudies-literature
| S-EPMC2992300 | biostudies-literature
| S-EPMC4687604 | biostudies-literature
| S-EPMC4200266 | biostudies-literature
| S-EPMC3670123 | biostudies-literature
| S-EPMC6093236 | biostudies-literature
| S-EPMC2025671 | biostudies-literature
| S-EPMC4000583 | biostudies-literature