Unknown

Dataset Information

0

A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut.


ABSTRACT: Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca(2+) signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology.

SUBMITTER: Stentz R 

PROVIDER: S-EPMC3969271 | biostudies-literature | 2014 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut.

Stentz Régis R   Osborne Samantha S   Horn Nikki N   Li Arthur W H AW   Hautefort Isabelle I   Bongaerts Roy R   Rouyer Marine M   Bailey Paul P   Shears Stephen B SB   Hemmings Andrew M AM   Brearley Charles A CA   Carding Simon R SR  

Cell reports 20140213 4


Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that  ...[more]

Similar Datasets

| S-EPMC1951816 | biostudies-literature
| S-EPMC3133074 | biostudies-literature
| S-EPMC4859692 | biostudies-literature
| S-EPMC3162446 | biostudies-literature
| S-EPMC6346138 | biostudies-literature
| S-EPMC30134 | biostudies-literature
| S-EPMC2910436 | biostudies-literature
| S-EPMC5672042 | biostudies-literature
| S-EPMC111133 | biostudies-literature
| S-EPMC3225410 | biostudies-literature