Unknown

Dataset Information

0

A key role for neuropeptide Y in lifespan extension and cancer suppression via dietary restriction.


ABSTRACT: Knowledge of genes essential for the life-extending effect of dietary restriction (DR) in mammals is incomplete. In this study, we found that neuropeptide Y (Npy), which mediates physiological adaptations to energy deficits, is an essential link between DR and longevity in mice. The lifespan-prolonging effect of lifelong 30% DR was attenuated in Npy-null mice, as was the effect on the occurrence of spontaneous tumors and oxidative stress responses in comparison to wild-type mice. In contrast, the physiological processes activated during adaptation to DR, including inhibition of anabolic signaling molecules (insulin and insulin-like growth factor-1), modulation of adipokine and corticosterone levels, and preferential fatty acid oxidation, were unaffected by the absence of Npy. These results suggest a key role for Npy in mediating the effects of DR. We also provide evidence that most of the physiological adaptations to DR could be achieved in mice without Npy.

SUBMITTER: Chiba T 

PROVIDER: S-EPMC3970128 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications


Knowledge of genes essential for the life-extending effect of dietary restriction (DR) in mammals is incomplete. In this study, we found that neuropeptide Y (Npy), which mediates physiological adaptations to energy deficits, is an essential link between DR and longevity in mice. The lifespan-prolonging effect of lifelong 30% DR was attenuated in Npy-null mice, as was the effect on the occurrence of spontaneous tumors and oxidative stress responses in comparison to wild-type mice. In contrast, th  ...[more]