A tissue culture model of murine gammaherpesvirus replication reveals roles for the viral cyclin in both virus replication and egress from infected cells.
Ontology highlight
ABSTRACT: Passage through the eukaryotic cell cycle is regulated by the activity of cyclins and their cyclin-dependent kinase partners. Rhadinoviruses, such as Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), encode a viral homologue of mammalian D-type cyclins. In MHV68, the interaction of the viral cyclin with its CDK partners is important for acute replication in the lungs following low dose inoculation. Attempts to further study this requirement in vitro have been limited by the lack of available tissue culture models that mimic the growth defect observed in vivo. It is hypothesized that analysis of virus replication in a cell line that displays properties of primary airway epithelium, such as the ability to polarize, might provide a suitable environment to characterize the role of the v-cyclin in virus replication. We report here MHV68 replication in the rat lung cell line RL-65, a non-transformed polarizable epithelial cell line. These analyses reveal a role for the v-cyclin in both virus replication, as well as virus egress from infected cells. As observed for acute replication in vivo, efficient replication in RL-65 cells requires CDK binding. However, we show that the KSHV v-cyclin (K-cyclin), which utilizes different CDK partners (CDK4 and CDK6) than the MHV68 v-cyclin (CDK2 and CDC2), can partially rescue the replication defect observed with a v-cyclin null mutant--both in vitro and in vivo. Finally, we show that MHV68 is shed from both the apical and basolateral surfaces of polarized RL-65 cells. In summary, the RL-65 cell line provides an attractive in vitro model that mimics critical aspects of MHV68 replication in the lungs.
SUBMITTER: Scott FM
PROVIDER: S-EPMC3973625 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA