Unknown

Dataset Information

0

Protein quantitative trait loci identify novel candidates modulating cellular response to chemotherapy.


ABSTRACT: Annotating and interpreting the results of genome-wide association studies (GWAS) remains challenging. Assigning function to genetic variants as expression quantitative trait loci is an expanding and useful approach, but focuses exclusively on mRNA rather than protein levels. Many variants remain without annotation. To address this problem, we measured the steady state abundance of 441 human signaling and transcription factor proteins from 68 Yoruba HapMap lymphoblastoid cell lines to identify novel relationships between inter-individual protein levels, genetic variants, and sensitivity to chemotherapeutic agents. Proteins were measured using micro-western and reverse phase protein arrays from three independent cell line thaws to permit mixed effect modeling of protein biological replicates. We observed enrichment of protein quantitative trait loci (pQTLs) for cellular sensitivity to two commonly used chemotherapeutics: cisplatin and paclitaxel. We functionally validated the target protein of a genome-wide significant trans-pQTL for its relevance in paclitaxel-induced apoptosis. GWAS overlap results of drug-induced apoptosis and cytotoxicity for paclitaxel and cisplatin revealed unique SNPs associated with the pharmacologic traits (at p<0.001). Interestingly, GWAS SNPs from various regions of the genome implicated the same target protein (p<0.0001) that correlated with drug induced cytotoxicity or apoptosis (p ? 0.05). Two genes were functionally validated for association with drug response using siRNA: SMC1A with cisplatin response and ZNF569 with paclitaxel response. This work allows pharmacogenomic discovery to progress from the transcriptome to the proteome and offers potential for identification of new therapeutic targets. This approach, linking targeted proteomic data to variation in pharmacologic response, can be generalized to other studies evaluating genotype-phenotype relationships and provide insight into chemotherapeutic mechanisms.

SUBMITTER: Stark AL 

PROVIDER: S-EPMC3974641 | biostudies-literature | 2014 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Protein quantitative trait loci identify novel candidates modulating cellular response to chemotherapy.

Stark Amy L AL   Hause Ronald J RJ   Gorsic Lidija K LK   Antao Nirav N NN   Wong Shan S SS   Chung Sophie H SH   Gill Daniel F DF   Im Hae K HK   Myers Jamie L JL   White Kevin P KP   Jones Richard Baker RB   Dolan M Eileen ME  

PLoS genetics 20140403 4


Annotating and interpreting the results of genome-wide association studies (GWAS) remains challenging. Assigning function to genetic variants as expression quantitative trait loci is an expanding and useful approach, but focuses exclusively on mRNA rather than protein levels. Many variants remain without annotation. To address this problem, we measured the steady state abundance of 441 human signaling and transcription factor proteins from 68 Yoruba HapMap lymphoblastoid cell lines to identify n  ...[more]

Similar Datasets

| S-EPMC2757904 | biostudies-literature
| S-EPMC5511346 | biostudies-literature
| S-EPMC7218510 | biostudies-literature
2010-06-25 | E-GEOD-7628 | biostudies-arrayexpress
| S-EPMC4899527 | biostudies-other
2008-03-04 | GSE7628 | GEO
| S-EPMC4256757 | biostudies-literature
| S-EPMC7235211 | biostudies-literature
| S-EPMC4282084 | biostudies-other
| S-EPMC4234421 | biostudies-literature