Oncostatin M mediates STAT3-dependent intestinal epithelial restitution via increased cell proliferation, decreased apoptosis and upregulation of SERPIN family members.
Ontology highlight
ABSTRACT: OBJECTIVE: Oncostatin M (OSM) is produced by activated T cells, monocytes, and dendritic cells and signals through two distinct receptor complexes consisting of gp130 and LIFR (I) or OSMR-? and gp130 (II), respectively. Aim of this study was to analyze the role of OSM in intestinal epithelial cells (IEC) and intestinal inflammation. METHODS: OSM expression and OSM receptor distribution was analyzed by PCR and immunohistochemistry experiments, signal transduction by immunoblotting. Gene expression studies were performed by microarray analysis and RT-PCR. Apoptosis was measured by caspases-3/7 activity. IEC migration and proliferation was studied in wounding and water soluble tetrazolium assays. RESULTS: The IEC lines Caco-2, DLD-1, SW480, HCT116 and HT-29 express mRNA for the OSM receptor subunits gp130 and OSMR-?, while only HCT116, HT-29 and DLD-1 cells express LIFR mRNA. OSM binding to its receptor complex activates STAT1, STAT3, ERK-1/2, SAPK/JNK-1/2, and Akt. Microarray analysis revealed 79 genes that were significantly up-regulated (adj.-p ? 0.05) by OSM in IEC. Most up-regulated genes belong to the functional categories "immunity and defense" (p = 2.1 × 10(-7)), "apoptosis" (p = 3.7 × 10(-4)) and "JAK/STAT cascade" (p = 3.4 × 10(-6)). Members of the SERPIN gene family were among the most strongly up-regulated genes. OSM significantly increased STAT3- and MEK1-dependent IEC cell proliferation (p<0.05) and wound healing (p = 3.9 × 10(-5)). OSM protein expression was increased in colonic biopsies of patients with active inflammatory bowel disease (IBD). CONCLUSIONS: OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. Considering the increased OSM expression in colonic biopsy specimens of patients with active IBD, OSM upregulation may modulate a barrier-protective host response in intestinal inflammation. Further in vivo studies are warranted to elucidate the exact role of OSM in intestinal inflammation and the potential of OSM as a drug target in IBD.
SUBMITTER: Beigel F
PROVIDER: S-EPMC3977870 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA