ABSTRACT: Obesity is an established colon cancer risk factor, while preventing or reversing obesity via a calorie restriction (CR) diet regimen decreases colon cancer risk. Unfortunately, the biological mechanisms underlying these associations are poorly understood, hampering development of mechanism-based approaches for preventing obesity-related colon cancer. We tested the hypotheses that diet-induced obesity (DIO) would increase (and CR would decrease) colon tumorigenesis in the mouse azoxymethane (AOM) model. In addition, we established that changes in inflammatory cytokines, growth factors, and microRNAs are associated with these energy balance-colon cancer links, and thus represent mechanism-based targets for colon cancer prevention. Mice were injected with AOM once a week for 5 weeks and randomized to: 1) control diet; 2) 30% CR diet; or 3) DIO diet. Mice were euthanized at week 5 (n?=?12/group), 10 (n?=?12/group), and 20 (n?=?20/group) after the last AOM injection. Colon tumors were counted, and cytokines, insulin-like growth factor 1 (IGF-1), IGF binding protein 3 (IGFBP-3), adipokines, proliferation, apoptosis, and expression of microRNAs (miRs) were measured. The DIO diet regimen induced an obese phenotype (?36% body fat), while CR induced a lean phenotype (?14% body fat); controls were intermediate (?26% body fat). Relative to controls, DIO increased (and CR decreased) the number of colon tumors (p?=?0.01), cytokines (p<0.001), IGF-1 (p?=?0.01), and proliferation (p<0.001). DIO decreased (and CR increased) IGFBP-3 and apoptosis (p<0.001). miRs including mir-425, mir-196, mir-155, mir-150, mir-351, mir-16, let-7, mir34, and mir-138 were differentially expressed between the dietary groups. We conclude that the enhancing effects of DIO and suppressive effects of CR on colon carcinogenesis are associated with alterations in several biological pathways, including inflammation, IGF-1, and microRNAs.