Unknown

Dataset Information

0

Interpreting principal component analyses of spatial population genetic variation.


ABSTRACT: Nearly 30 years ago, Cavalli-Sforza et al. pioneered the use of principal component analysis (PCA) in population genetics and used PCA to produce maps summarizing human genetic variation across continental regions. They interpreted gradient and wave patterns in these maps as signatures of specific migration events. These interpretations have been controversial, but influential, and the use of PCA has become widespread in analysis of population genetics data. However, the behavior of PCA for genetic data showing continuous spatial variation, such as might exist within human continental groups, has been less well characterized. Here, we find that gradients and waves observed in Cavalli-Sforza et al.'s maps resemble sinusoidal mathematical artifacts that arise generally when PCA is applied to spatial data, implying that the patterns do not necessarily reflect specific migration events. Our findings aid interpretation of PCA results and suggest how PCA can help correct for continuous population structure in association studies.

SUBMITTER: Novembre J 

PROVIDER: S-EPMC3989108 | biostudies-literature | 2008 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Interpreting principal component analyses of spatial population genetic variation.

Novembre John J   Stephens Matthew M  

Nature genetics 20080420 5


Nearly 30 years ago, Cavalli-Sforza et al. pioneered the use of principal component analysis (PCA) in population genetics and used PCA to produce maps summarizing human genetic variation across continental regions. They interpreted gradient and wave patterns in these maps as signatures of specific migration events. These interpretations have been controversial, but influential, and the use of PCA has become widespread in analysis of population genetics data. However, the behavior of PCA for gene  ...[more]

Similar Datasets

| S-EPMC5732370 | biostudies-literature
| S-EPMC7750941 | biostudies-literature
| S-EPMC6529455 | biostudies-literature
| S-EPMC3548254 | biostudies-literature
| S-EPMC2902448 | biostudies-literature
| S-EPMC4046680 | biostudies-literature
| S-EPMC5644186 | biostudies-literature
| S-EPMC3703467 | biostudies-other
2011-08-15 | GSE31375 | GEO
| S-EPMC7834364 | biostudies-literature