Unknown

Dataset Information

0

Finding the Spatial Co-Variation of Brain Deformation With Principal Component Analysis.


ABSTRACT:

Objective

Strain and strain rate are effective traumatic brain injury metrics. In finite element (FE) head model, thousands of elements were used to represent the spatial distribution of these metrics. Owing that these metrics are resulted from brain inertia, their spatial distribution can be represented in more concise pattern. Since head kinematic features and brain deformation vary largely across head impact types (Zhan et al., 2021), we applied principal component analysis (PCA) to find the spatial co-variation of injury metrics (maximum principal strain (MPS), MPS rate (MPSR) and MPS × MPSR) in four impact types: simulation, football, mixed martial arts and car crashes, and used the PCA to find patterns in these metrics and improve the machine learning head model (MLHM).

Methods

We applied PCA to decompose the injury metrics for all impacts in each impact type, and investigate the spatial co-variation using the first principal component (PC1). Furthermore, we developed a MLHM to predict PC1 and then inverse-transform to predict for all brain elements. The accuracy, the model complexity and the size of training dataset of PCA-MLHM are compared with previous MLHM (Zhan et al., 2021).

Results

PC1 explained variance on the datasets. Based on PC1 coefficients, the corpus callosum and midbrain exhibit high variance on all datasets. Finally, the PCA-MLHM reduced model parameters by 74% with a similar MPS estimation accuracy.

Conclusion

The brain injury metric in a dataset can be decomposed into mean components and PC1 with high explained variance.

Significance

The spatial co-variation analysis enables better interpretation of the patterns in brain injury metrics. It also improves the efficiency of MLHM.

SUBMITTER: Zhan X 

PROVIDER: S-EPMC9580615 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Finding the Spatial Co-Variation of Brain Deformation With Principal Component Analysis.

Zhan Xianghao X   Liu Yuzhe Y   Cecchi Nicholas J NJ   Gevaert Olivier O   Zeineh Michael M MM   Grant Gerald A GA   Camarillo David B DB  

IEEE transactions on bio-medical engineering 20220919 10


<h4>Objective</h4>Strain and strain rate are effective traumatic brain injury metrics. In finite element (FE) head model, thousands of elements were used to represent the spatial distribution of these metrics. Owing that these metrics are resulted from brain inertia, their spatial distribution can be represented in more concise pattern. Since head kinematic features and brain deformation vary largely across head impact types (Zhan et al., 2021), we applied principal component analysis (PCA) to f  ...[more]

Similar Datasets

| S-EPMC3989108 | biostudies-literature
| S-EPMC5732370 | biostudies-literature
| S-EPMC6529455 | biostudies-literature
2011-08-15 | GSE31375 | GEO
| S-EPMC7834364 | biostudies-literature
| S-EPMC5176286 | biostudies-literature
| S-EPMC9793858 | biostudies-literature
| S-EPMC4721272 | biostudies-literature
| S-EPMC3131008 | biostudies-literature
| S-EPMC2835171 | biostudies-literature