A novel highly potent autotaxin/ENPP2 inhibitor produces prolonged decreases in plasma lysophosphatidic acid formation in vivo and regulates urethral tension.
Ontology highlight
ABSTRACT: Autotaxin, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted enzyme that has lysophospholipase D activity, which converts lysophosphatidylcholine to bioactive lysophosphatidic acid. Lysophosphatidic acid activates at least six G-protein coupled recpetors, which promote cell proliferation, survival, migration and muscle contraction. These physiological effects become dysfunctional in the pathology of cancer, fibrosis, and pain. To date, several autotaxin/ENPP2 inhibitors have been reported; however, none were able to completely and continuously inhibit autotaxin/ENPP2 in vivo. In this study, we report the discovery of a highly potent autotaxin/ENPP2 inhibitor, ONO-8430506, which decreased plasma lysophosphatidic acid formation. The IC50 values of ONO-8540506 for lysophospholipase D activity were 6.4-19 nM for recombinant autotaxin/ENPP2 proteins and 4.7-11.6 nM for plasma from various animal species. Plasma lysophosphatidic acid formation during 1-h incubation was almost completely inhibited by the addition of >300 nM of the compound to human plasma. In addition, when administered orally to rats at a dose of 30 mg/kg, the compound demonstrated good pharmacokinetics in rats and persistently inhibited plasma lysophosphatidic acid formation even at 24 h after administration. Smooth muscle contraction is a known to be promoted by lysophosphatidic acid. In this study, we showed that dosing rats with ONO-8430506 decreased intraurethral pressure accompanied by urethral relaxation. These findings demonstrate the potential of this autotaxin/ENPP2 inhibitor for the treatment of various diseases caused by lysophosphatidic acid, including urethral obstructive disease such as benign prostatic hyperplasia.
SUBMITTER: Saga H
PROVIDER: S-EPMC3991570 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA