Reactive intermediates: molecular and MS-based approaches to assess the functional significance of chemical-protein adducts.
Ontology highlight
ABSTRACT: Biologically reactive intermediates formed as endogenous products of various metabolic processes are considered important factors in a variety of human diseases, including Parkinson's disease and other neurological disorders, diabetes and complications thereof, and other inflammatory-associated diseases. Chemical-induced toxicities are also frequently mediated via the bioactivation of relatively stable organic molecules to reactive electrophilic metabolites. Indeed, chemical-induced toxicities have long been known to be associated with the ability of electrophilic metabolites to react with a variety of targets within the cell, including their covalent adduction to nucleophilic residues in proteins, and nucleotides within DNA. Although we possess considerable knowledge of the various biochemical mechanisms by which chemicals undergo metabolic bioactivation, we understand far less about the processes that couple bioactivation to toxicity. Identifying specific sites within a protein, which are targets for adduction, can provide the initial information necessary to determine whether such adventitious posttranslational modifications significantly alter either protein structure and/or function. To address this problem, we have developed mass spectrometry (MS)-based approaches to identify specific amino acid targets of electrophile adduction (electrophile-binding motifs), coupled with molecular modeling of such adducts, to determine the potential structural and functional consequences. Where appropriate, functional assays are subsequently conducted to assess protein function.
SUBMITTER: Monks TJ
PROVIDER: S-EPMC4007760 | biostudies-literature | 2013 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA