Unknown

Dataset Information

0

Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation.


ABSTRACT: Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-?1 (TGF-?1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-?1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the role of JNK1 in house dust mite (HDM)-induced airway remodeling, we induced allergic airway inflammation in wild-type (WT) and JNK1-/- mice by intranasal administration of HDM extract. WT and JNK1-/- mice were sensitized with intranasal aspirations of HDM extract for 15 days over 3 wk. HDM caused similar increases in airway hyperresponsiveness, mucus metaplasia, and airway inflammation in WT and JNK1-/- mice. In addition, the profibrotic cytokine TGF-?1 and phosphorylation of Smad3 were equally increased in WT and JNK1-/- mice. In contrast, increases in collagen content in lung tissue induced by HDM were significantly attenuated in JNK1-/- mice compared with WT controls. Furthermore HDM-induced increases of ?-smooth muscle actin (?-SMA) protein and mRNA expression as well as the mesenchymal markers high-mobility group AT-hook 2 and collagen1A1 in WT mice were attenuated in JNK1-/- mice. The let-7 family of microRNAs has previously been linked to fibrosis. HDM exposure in WT mice and primary lung epithelial cells resulted in striking decreases in let-7g miRNA that were not observed in mice or primary lung epithelial cells lacking JNK1-/- mice. Overexpression of let-7g in lung epithelial cells reversed the HDM-induced increases in ?-SMA. Collectively, these findings demonstrate an important requirement for JNK1 in promoting HDM-induced fibrotic airway remodeling.

SUBMITTER: van der Velden JL 

PROVIDER: S-EPMC4010650 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Absence of c-Jun NH2-terminal kinase 1 protects against house dust mite-induced pulmonary remodeling but not airway hyperresponsiveness and inflammation.

van der Velden Jos L J JL   Hoffman Sidra M SM   Alcorn John F JF   Tully Jane E JE   Chapman David G DG   Lahue Karolyn G KG   Guala Amy S AS   Lundblad Lennart K A LK   Aliyeva Minara M   Daphtary Nirav N   Irvin Charles G CG   Janssen-Heininger Yvonne M W YM  

American journal of physiology. Lung cellular and molecular physiology 20140307 9


Chronic allergic asthma leads to airway remodeling and subepithelial fibrosis via mechanisms not fully understood. Airway remodeling is amplified by profibrotic mediators, such as transforming growth factor-β1 (TGF-β1), which plays a cardinal role in various models of fibrosis. We recently have identified a critical role for c-Jun-NH2-terminal-kinase (JNK) 1 in augmenting the profibrotic effects of TGF-β1, linked to epithelial-to-mesenchymal transition of airway epithelial cells. To examine the  ...[more]

Similar Datasets

| S-EPMC3858534 | biostudies-literature
| S-EPMC2913231 | biostudies-literature
| S-EPMC3824034 | biostudies-literature
| S-EPMC8024803 | biostudies-literature
| S-EPMC3720585 | biostudies-literature
| S-EPMC3863691 | biostudies-literature
| S-EPMC5932037 | biostudies-literature
| S-EPMC6113092 | biostudies-literature
| S-EPMC7904896 | biostudies-literature
| S-EPMC7893966 | biostudies-literature