Unknown

Dataset Information

0

Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction.


ABSTRACT: Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials.

SUBMITTER: Tian J 

PROVIDER: S-EPMC4014621 | biostudies-literature | 2014 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantum and classical magnetoresistance in ambipolar topological insulator transistors with gate-tunable bulk and surface conduction.

Tian Jifa J   Chang Cuizu C   Cao Helin H   He Ke K   Ma Xucun X   Xue Qikun Q   Chen Yong P YP  

Scientific reports 20140507


Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3  ...[more]

Similar Datasets

| S-EPMC5504072 | biostudies-literature
| S-EPMC5458500 | biostudies-literature
| S-EPMC9048268 | biostudies-literature
| S-EPMC4326695 | biostudies-literature
| S-EPMC7374568 | biostudies-literature
| S-EPMC5263869 | biostudies-literature
| S-EPMC8175690 | biostudies-literature
| S-EPMC4246977 | biostudies-literature
| S-EPMC5702618 | biostudies-literature
| S-EPMC5760711 | biostudies-literature