Unknown

Dataset Information

0

MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.


ABSTRACT: Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. This study demonstrates that miR-133a expression negatively correlates with cell invasiveness in both transformed normal bronchial epithelial cells and lung cancer cell lines. The oncogenic receptors in lung cancer cells, including insulin-like growth factor 1 receptor (IGF-1R), TGF-beta receptor type-1 (TGFBR1), and epidermal growth factor receptor (EGFR), are direct targets of miR-133a. MiR-133a can inhibit cell invasiveness and cell growth through suppressing the expressions of IGF-1R, TGFBR1 and EGFR, which then influences the downstream signaling in lung cancer cell lines. The cell invasive ability is suppressed in IGF-1R- and TGFBR1-repressed cells and this phenomenon is mediated through AKT signaling in highly invasive cell lines. In addition, by using the in vivo animal model, we find that ectopically-expressing miR-133a dramatically suppresses the metastatic ability of lung cancer cells. Accordingly, patients with NSCLCs who have higher expression levels of miR-133a have longer survival rates compared with those who have lower miR-133a expression levels. In summary, we identified the tumor suppressor role of miR-133a in lung cancer outcome prognosis, and we demonstrated that it targets several membrane receptors, which generally produce an activating signaling network during the progression of lung cancer.

SUBMITTER: Wang LK 

PROVIDER: S-EPMC4016005 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

MicroRNA-133a suppresses multiple oncogenic membrane receptors and cell invasion in non-small cell lung carcinoma.

Wang Lu-Kai LK   Hsiao Tzu-Hung TH   Hong Tse-Ming TM   Chen Hsuan-Yu HY   Kao Shih-Han SH   Wang Wen-Lung WL   Yu Sung-Liang SL   Lin Ching-Wen CW   Yang Pan-Chyr PC  

PloS one 20140509 5


Non-small cell lung cancers (NSCLCs) cause high mortality worldwide, and the cancer progression can be activated by several genetic events causing receptor dysregulation, including mutation or amplification. MicroRNAs are a group of small non-coding RNA molecules that function in gene silencing and have emerged as the fine-tuning regulators during cancer progression. MiR-133a is known as a key regulator in skeletal and cardiac myogenesis, and it acts as a tumor suppressor in various cancers. Thi  ...[more]

Similar Datasets

| S-EPMC8063298 | biostudies-literature
| S-EPMC5833797 | biostudies-literature
| S-EPMC6553855 | biostudies-literature
| S-EPMC6495205 | biostudies-literature
| S-EPMC5467824 | biostudies-literature
| S-EPMC2805032 | biostudies-literature
| S-EPMC5312387 | biostudies-literature
| S-EPMC3499598 | biostudies-literature
| S-EPMC4568795 | biostudies-literature
| S-EPMC4633902 | biostudies-literature