Unknown

Dataset Information

0

Interactions of the human cardiopulmonary, hormonal and body fluid systems in parabolic flight.


ABSTRACT:

Purpose

Commercial parabolic flights accessible to customers with a wide range of health states will become more prevalent in the near future because of a growing private space flight sector. However, parabolic flights present the passengers' cardiovascular system with a combination of stressors, including a moderately hypobaric hypoxic ambient environment (HH) and repeated gravity transitions (GT). Thus, the aim of this study was to identify unique and combined effects of HH and GT on the human cardiovascular, pulmonary and fluid regulation systems.

Methods

Cardiac index was determined by inert gas rebreathing (CI(rb)), and continuous non-invasive finger blood pressure (FBP) was repeatedly measured in 18 healthy subjects in the standing position while they were in parabolic flight at 0 and 1.8 G(z). Plasma volume (PV) and fluid regulating blood hormones were determined five times over the flight day. Eleven out of the 18 subjects were subjected to an identical test protocol in a hypobaric chamber in ambient conditions comparable to parabolic flight.

Results

CI(rb) in 0 G(z) decreased significantly during flight (early, 5.139 ± 1.326 L/min; late, 4.150 ± 1.082 L/min) because of a significant decrease in heart rate (HR) (early, 92 ± 15 min(-1); late, 78 ± 12 min(-1)), even though the stroke volume (SV) remained the same. HH produced a small decrease in the PV, both in the hypobaric chamber and in parabolic flight, indicating a dominating HH effect without a significant effect of GT on PV (-52 ± 34 and -115 ± 32 ml, respectively). Pulmonary tissue volume decreased in the HH conditions because of hypoxic pulmonary vasoconstriction (0.694 ± 0.185 and 0.560 ± 0.207 ml) but increased at 0 and 1.8 G(z) in parabolic flight (0.593 ± 0.181 and 0.885 ± 0.458 ml, respectively), indicating that cardiac output and arterial blood pressure rather than HH are the main factors affecting pulmonary vascular regulation in parabolic flight.

Conclusion

HH and GT each lead to specific responses of the cardiovascular system in parabolic flight. Whereas HH seems to be mainly responsible for the PV decrease in flight, GT overrides the hypoxic pulmonary vasoconstriction induced by HH. This finding indicates the need for careful and individual medical examination and, if necessary, health status improvement for each individual considering a parabolic flight, given the effects of the combination of HH and GT in flight.

SUBMITTER: Limper U 

PROVIDER: S-EPMC4019836 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8155259 | biostudies-literature
| S-EPMC9852254 | biostudies-literature
| S-EPMC6081456 | biostudies-literature
| S-EPMC4963113 | biostudies-literature
2017-08-11 | GSE94253 | GEO
2022-09-30 | GSE206008 | GEO
| S-EPMC7279017 | biostudies-literature
| S-EPMC4369370 | biostudies-literature
2024-05-01 | GSE174291 | GEO
| S-EPMC4838214 | biostudies-literature