Ontology highlight
ABSTRACT: Aims
To investigate the role of endogenous hydrogen sulfide (H2S) in the control of aging and healthspan of Caenorhabditis elegans.Results
We show that the model organism, C. elegans, synthesizes H2S. Three H2S-synthesizing enzymes are present in C. elegans, namely cystathionine ? lyase (CSE), cystathionine ? synthetase, and 3-mercaptopyruvate transferase (MPST or 3-MST). Genetic deficiency of mpst-1 (3-MST orthologue 1), but not cth-2 (CSE orthologue), reduced the lifespan of C. elegans. This effect was reversed by a pharmacological H2S donor (GYY4137). GYY4137 also reduced detrimental age-dependent changes in a range of physiological indices, including pharyngeal contraction and defecation. Treatment of C. elegans with GYY4137 increased the expression of several age-related, stress response, and antioxidant genes, whereas MitoSOX Red fluorescence, indicative of reactive oxygen species generation, was increased in mpst-1 knockouts and decreased by GYY4137 treatment. GYY4137 additionally increased the lifespan in short-lived mev-1 mutants with elevated oxidative stress and protected wild-type C. elegans against paraquat poisoning. The lifespan-prolonging and health-promoting effects of H2S in C. elegans are likely due to the antioxidant action of this highly cell-permeable gas.Innovation
The possibility that novel pharmacological agents based on the principle of H2S donation may be able to retard the onset of age-related disease by slowing the aging process warrants further study.Conclusion
Our results show that H2S is an endogenous regulator of oxidative damage, metabolism, and aging in C. elegans and provide new insight into the mechanisms, which control aging in this model organism.
SUBMITTER: Qabazard B
PROVIDER: S-EPMC4025568 | biostudies-literature | 2014 Jun
REPOSITORIES: biostudies-literature
Qabazard Bedoor B Li Ling L Gruber Jan J Peh Meng Teng MT Ng Li Fang LF Kumar Srinivasan Dinesh SD Rose Peter P Tan Choon-Hong CH Dymock Brian W BW Wei Feng F Swain Suresh C SC Halliwell Barry B Stürzenbaum Stephen R SR Moore Philip K PK
Antioxidants & redox signaling 20131121 16
<h4>Aims</h4>To investigate the role of endogenous hydrogen sulfide (H2S) in the control of aging and healthspan of Caenorhabditis elegans.<h4>Results</h4>We show that the model organism, C. elegans, synthesizes H2S. Three H2S-synthesizing enzymes are present in C. elegans, namely cystathionine γ lyase (CSE), cystathionine β synthetase, and 3-mercaptopyruvate transferase (MPST or 3-MST). Genetic deficiency of mpst-1 (3-MST orthologue 1), but not cth-2 (CSE orthologue), reduced the lifespan of C. ...[more]