Flanking sequence specificity determines coding microsatellite heteroduplex and mutation rates with defective DNA mismatch repair (MMR).
Ontology highlight
ABSTRACT: The activin type II receptor (ACVR2) contains two identical microsatellites in exons 3 and 10, but only the exon 10 microsatellite is frameshifted in mismatch repair (MMR)-defective colonic tumors. The reason for this selectivity is not known. We hypothesized that ACVR2 frameshifts were influenced by DNA sequences surrounding the microsatellite. We constructed plasmids in which exons 3 or 10 of ACVR2 were cloned +1 bp out of frame of enhanced green fluorescent protein (EGFP), allowing -1 bp frameshift to express EGFP. Plasmids were stably transfected into MMR-deficient cells, and subsequent non-fluorescent cells were sorted, cultured and harvested for mutation analysis. We swapped DNA sequences flanking the exon 3 and 10 microsatellites to test our hypothesis. Native ACVR2 exon 3 and 10 microsatellites underwent heteroduplex formation (A(7)/T(8)) in hMLH1(-/-) cells, but only exon 10 microsatellites fully mutated (A(7)/T(7)) in both hMLH1(-/-) and hMSH6(-/-) backgrounds, showing selectivity for exon 10 frameshifts and inability of exon 3 heteroduplexes to fully mutate. Substituting nucleotides flanking the exon 3 microsatellite for nucleotides flanking the exon 10 microsatellite significantly reduced heteroduplex and full mutation in hMLH1(-/-) cells. When the exon 3 microsatellite was flanked by nucleotides normally surrounding the exon 10 microsatellite, fully mutant exon 3 frameshifts appeared. Mutation selectivity for ACVR2 lies partly with flanking nucleotides surrounding each microsatellite.
SUBMITTER: Chung H
PROVIDER: S-EPMC4028169 | biostudies-literature | 2010 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA