Unknown

Dataset Information

0

Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands.


ABSTRACT: The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duplex. TDG targets the non-damaged DNA strand and efficiently excises T opposite of hypoxanthine (Hx), 1,N(6)-ethenoadenine, 7,8-dihydro-8-oxoadenine and abasic site in TpG/CpX context, where X is a modified residue. In vitro reconstitution of BER with duplex DNA containing Hx•T pair and TDG results in incorporation of cytosine across Hx. Furthermore, analysis of the mutation spectra inferred from single nucleotide polymorphisms in human population revealed a highly biased mutation pattern within CpG islands (CGIs), with enhanced mutation rate at CpA and TpG sites. These findings demonstrate that under experimental conditions used TDG catalyzes sequence context-dependent aberrant removal of thymine, which results in TpG, CpA?CpG mutations, thus providing a plausible mechanism for the putative evolutionary origin of the CGIs in mammalian genomes.

SUBMITTER: Talhaoui I 

PROVIDER: S-EPMC4041421 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands.

Talhaoui Ibtissam I   Couve Sophie S   Gros Laurent L   Ishchenko Alexander A AA   Matkarimov Bakhyt B   Saparbaev Murat K MK  

Nucleic acids research 20140401 10


The human thymine-DNA glycosylase (TDG) initiates the base excision repair (BER) pathway to remove spontaneous and induced DNA base damage. It was first biochemically characterized for its ability to remove T mispaired with G in CpG context. TDG is involved in the epigenetic regulation of gene expressions by protecting CpG-rich promoters from de novo DNA methylation. Here we demonstrate that TDG initiates aberrant repair by excising T when it is paired with a damaged adenine residue in DNA duple  ...[more]

Similar Datasets

| S-EPMC2764232 | biostudies-literature
| S-EPMC3047422 | biostudies-literature
| S-EPMC3553953 | biostudies-literature
| S-EPMC310670 | biostudies-literature
| S-EPMC4417305 | biostudies-literature
| S-EPMC218745 | biostudies-literature
| S-EPMC8473333 | biostudies-literature
| S-EPMC3730110 | biostudies-literature
| S-EPMC3367172 | biostudies-literature
| S-EPMC2883304 | biostudies-literature