In vivo siRNA delivery system for targeting to the liver by poly-l-glutamic acid-coated lipoplex.
Ontology highlight
ABSTRACT: In this study, we developed anionic polymer-coated liposome/siRNA complexes (lipoplexes) with chondroitin sulfate C (CS), poly-l-glutamic acid (PGA) and poly-aspartic acid (PAA) for siRNA delivery by intravenous injection, and evaluated the biodistribution and gene silencing effect in mice. The sizes of CS-, PGA- and PAA-coated lipoplexes were about 200?nm and their ?-potentials were negative. CS-, PGA- and PAA-coated lipoplexes did not induce agglutination after mixing with erythrocytes. In terms of biodistribution, siRNAs after intravenous administration of cationic lipoplexes were largely observed in the lungs, but those of CS-, PGA- and PAA-coated lipoplexes were in both the liver and the kidneys, indicating that siRNA might be partially released from the anionic polymer-coated lipoplexes in the blood circulation and accumulate in the kidney, although the lipoplexes can prevent the agglutination with blood components. To increase the association between siRNA and cationic liposome, we used cholesterol-modified siRNA (siRNA-Chol) for preparation of the lipoplexes. When CS-, PGA- and PAA-coated lipoplexes of siRNA-Chol were injected into mice, siRNA-Chol was mainly observed in the liver, not in the kidneys. In terms of the suppression of gene expression in vivo, apolipoprotein B (ApoB) mRNA in the liver was significantly reduced 48?h after single intravenous injection of PGA-coated lipoplex of ApoB siRNA-Chol (2.5?mg?siRNA/kg), but not cationic, CS- and PAA-coated lipoplexes. In terms of toxicity after intravenous injection, CS-, PGA- and PAA-coated lipoplexes did not increase GOT and GPT concentrations in blood. From these findings, PGA coatings for cationic lipoplex of siRNA-Chol might produce a systemic vector of siRNA to the liver.
SUBMITTER: Hattori Y
PROVIDER: S-EPMC4050376 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA