Unknown

Dataset Information

0

Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series.


ABSTRACT: RNA-Seq is emerging as an increasingly important tool in biological research, and it provides the most direct evidence of the relationship between the physiological state and molecular changes in cells. A large amount of RNA-Seq data across diverse experimental conditions have been generated and deposited in public databases. However, most developed approaches for coexpression analyses focus on the coexpression pattern mining of the transcriptome, thereby ignoring the magnitude of gene differences in one pattern. Furthermore, the functional relationships of genes in one pattern, and notably among patterns, were not always recognized. In this study, we developed an integrated strategy to identify differential coexpression patterns of genes and probed the functional mechanisms of the modules. Two real datasets were used to validate the method and allow comparisons with other methods. One of the datasets was selected to illustrate the flow of a typical analysis. In summary, we present an approach to robustly detect coexpression patterns in transcriptomes and to stratify patterns according to their relative differences. Furthermore, a global relationship between patterns and biological functions was constructed. In addition, a freely accessible web toolkit "coexpression pattern mining and GO functional analysis" (COGO) was developed.

SUBMITTER: Zhao H 

PROVIDER: S-EPMC4052503 | biostudies-literature | 2014

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stratification of gene coexpression patterns and GO function mining for a RNA-Seq data series.

Zhao Hui H   Cao Fenglin F   Gong Yonghui Y   Xu Huafeng H   Fei Yiping Y   Wu Longyue L   Ye Xiangmei X   Yang Dongguang D   Liu Xiuhua X   Li Xia X   Zhou Jin J  

BioMed research international 20140519


RNA-Seq is emerging as an increasingly important tool in biological research, and it provides the most direct evidence of the relationship between the physiological state and molecular changes in cells. A large amount of RNA-Seq data across diverse experimental conditions have been generated and deposited in public databases. However, most developed approaches for coexpression analyses focus on the coexpression pattern mining of the transcriptome, thereby ignoring the magnitude of gene differenc  ...[more]

Similar Datasets

| S-EPMC4460925 | biostudies-literature
| S-EPMC3493127 | biostudies-literature
| S-EPMC3760913 | biostudies-literature
| S-EPMC5893633 | biostudies-other
| S-EPMC6573782 | biostudies-literature
| S-EPMC8721966 | biostudies-literature
| S-EPMC8796424 | biostudies-literature
| S-EPMC8085783 | biostudies-literature
| S-EPMC4804494 | biostudies-literature
| S-EPMC8415361 | biostudies-literature