Unknown

Dataset Information

0

Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy.


ABSTRACT: Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway inhibitors could benefit from information on specific phosphatases, which naturally antagonize the kinase targets. This PI3K pathway is found mutated in most cancer types, including prostate, breast, colon, and brain tumors. The tumor-suppressing phosphatases operate at two levels. Lipid-level phosphatases, such as PTEN and INPP4B, revert PI3K activity to keep the lipid second messengers inactive. At the protein level, PHLPP1/2 protein phosphatases inactivate AKT kinase, thus antagonizing mTOR complex 2 activity. However, in contrast with their kinase counterparts the phosphatases are unlikely drug targets. They would need to be stimulated by therapy and are commonly deleted and mutated in cancer. Yet, because they occupy critical nodes in preventing cancer initiation and progression, the information on their status has tremendous potential in outcome prediction, and in matching the available kinase inhibitor repertoire with the right patients. Clin Cancer Res; 20(12); 3057-63. ©2014 AACR.

SUBMITTER: Chen M 

PROVIDER: S-EPMC4058638 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy.

Chen Muhan M   Nowak Dawid G DG   Trotman Lloyd C LC  

Clinical cancer research : an official journal of the American Association for Cancer Research 20140601 12


Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway  ...[more]

Similar Datasets

| S-EPMC5413367 | biostudies-literature
2016-08-21 | E-GEOD-74667 | biostudies-arrayexpress
| S-EPMC4971667 | biostudies-literature
2016-08-21 | GSE74667 | GEO
| S-EPMC4276042 | biostudies-literature
| S-EPMC4107712 | biostudies-literature
| S-EPMC4631635 | biostudies-literature
| S-EPMC3896410 | biostudies-literature
| S-EPMC3992486 | biostudies-literature
| S-EPMC5433896 | biostudies-literature