Unknown

Dataset Information

0

The autolysis of human HtrA1 is governed by the redox state of its N-terminal domain.


ABSTRACT: Human HtrA1 (high-temperature requirement protein A1) belongs to a conserved family of serine proteases involved in protein quality control and cell fate. The homotrimeric ubiquitously expressed protease has chymotrypsin-like specificity and primarily targets hydrophobic stretches in selected or misfolded substrate proteins. In addition, the enzyme is capable of exerting autolytic activity by removing the N-terminal insulin-like growth factor binding protein (IGFBP)/Kazal-like tandem motif without affecting the protease activity. In this study, we have addressed the mechanism governing the autolytic activity and find that it depends on the integrity of the disulfide bonds in the N-terminal IGFBP/Kazal-like domain. The specificity of the autolytic cleavage reveals a strong preference for cysteine in the P1 position of HtrA1, explaining the lack of autolysis prior to disulfide reduction. Significantly, the disulfides were reduced by thioredoxin, suggesting that autolysis of HtrA1 in vivo is linked to the endogenous redox balance and that the N-terminal domain acts as a redox-sensing switch.

SUBMITTER: Risor MW 

PROVIDER: S-EPMC4067144 | biostudies-literature | 2014 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

The autolysis of human HtrA1 is governed by the redox state of its N-terminal domain.

Risør Michael W MW   Poulsen Ebbe Toftgaard ET   Thomsen Line R LR   Dyrlund Thomas F TF   Nielsen Tania A TA   Nielsen Niels Chr NC   Sanggaard Kristian W KW   Enghild Jan J JJ  

Biochemistry 20140606 23


Human HtrA1 (high-temperature requirement protein A1) belongs to a conserved family of serine proteases involved in protein quality control and cell fate. The homotrimeric ubiquitously expressed protease has chymotrypsin-like specificity and primarily targets hydrophobic stretches in selected or misfolded substrate proteins. In addition, the enzyme is capable of exerting autolytic activity by removing the N-terminal insulin-like growth factor binding protein (IGFBP)/Kazal-like tandem motif witho  ...[more]

Similar Datasets

| S-EPMC4426401 | biostudies-literature
| S-EPMC7585439 | biostudies-literature
| S-EPMC7756430 | biostudies-literature
| S-EPMC5588702 | biostudies-literature
| S-EPMC2851762 | biostudies-literature
| S-EPMC6827007 | biostudies-literature
| S-EPMC10515493 | biostudies-literature
| S-EPMC2576395 | biostudies-literature
| S-EPMC5944377 | biostudies-literature
| S-EPMC7943729 | biostudies-literature