Project description:We report a fatal case of Candida auris that was involved in mixed candidemia with Candida tropicalis, isolated from the blood of a neutropenic patient. Identification of both isolates was confirmed by amplification and sequencing of internal transcribed spacer and D1/D2 domain of large subunit in rRNA gene. Antifungal susceptibility test by E-test method revealed that C. auris was resistant to amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole and voriconazole. On the other hand, C. tropicalis was sensitive to all antifungal tested. The use of chromogenic agar as isolation media is vital in detecting mixed candidemia.
Project description:BackgroundCandida auris is an emerging multidrug-resistant fungal pathogen associated with high mortality.MethodsWe investigated the genetic relatedness of clinical C. auris isolates from patients admitted to either public- or private-sector hospitals, which were submitted to a reference laboratory from 2012 to 2015. Patient demographics and clinical details were recorded. We performed antifungal susceptibility testing, sequencing of the hotspot 1 and 2 regions of the FKS1 and FKS2 genes for all isolates with an echinocandin minimum inhibitory concentration (MIC) of ≥1 µg/mL and cluster analysis using multilocus sequence typing.ResultsEighty-five isolates were confirmed as C. auris. The median patient age was 59 years [inter-quartile range (IQR): 48-68 years], with male patients accounting for 68% of cases. Specimen types included urine (29%), blood (27%), central venous catheter tips (25%), irrigation fluid (7%), tissue (5%), respiratory tract specimens (4%) and other (3%). Ninety-seven per cent of isolates were resistant to fluconazole, 7% were resistant to both fluconazole and voriconazole, 8% were resistant to both fluconazole and echinocandins (considered multidrug resistant) and all were susceptible to amphotericin B. Of the 15 randomly selected fluconazole-resistant isolates, 14 isolates had an isavuconazole MIC ≤ 1 µg/mL. No FKS mutations were detected. Multilocus sequence typing (MLST) analysis grouped isolates into two clusters: cluster 1 and cluster 2 comprising 83 and 2 isolates, respectively.ConclusionsAzole-resistant C. auris strains circulating in South African hospitals were related by MLST, but the possibility of nosocomial transmission should be explored using a more discriminatory technique, for example, whole genome sequencing.
Project description:Candida auris is a multidrug-resistant fungal pathogen that is endemic in South African hospitals. We tested bloodstream C. auris isolates that were submitted to a reference laboratory for national laboratory-based surveillance for candidemia in 2016 and 2017. We confirmed the species identification by phenotypic/molecular methods. We tested susceptibility to amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using broth microdilution and Etest methods. We interpreted MICs using tentative breakpoints. We sequenced the genomes of a subset of isolates and compared them to the C. auris B8441 reference strain. Of 400 C. auris isolates, 361 (90%) were resistant to at least one antifungal agent, 339 (94%) to fluconazole alone (MICs of ≥32 µg/ml), 19 (6%) to fluconazole and amphotericin B (MICs of ≥2 µg/ml), and 1 (0.3%) to amphotericin B alone. Two (0.5%) isolates from a single patient were pan-resistant (resistant to fluconazole, amphotericin B, and echinocandins). Of 92 isolates selected for whole-genome sequencing, 77 clustered in clade III, including the pan-resistant isolates, 13 in clade I, and 2 in clade IV. Eighty-four of the isolates (91%) were resistant to at least one antifungal agent; both resistant and susceptible isolates had mutations. The common substitutions identified across the different clades were VF125AL, Y132F, K177R, N335S, and E343D in ERG11; N647T in MRR1; A651P, A657V, and S195G in TAC1b; S639P in FKS1HP1; and S58T in ERG3. Most South African C. auris isolates were resistant to azoles, although resistance to polyenes and echinocandins was less common. We observed mutations in resistance genes even in phenotypically susceptible isolates.
Project description:In South Africa, Candida auris was the third most common cause of candidemia in 2016-2017. We performed single nucleotide polymorphism (SNP) genome-wide analysis of 115 C. auris isolates collected between 2009 and 2018 from national laboratory-based surveillance, an environmental survey at four hospitals and a colonization study during a neonatal unit outbreak. The first known South African C. auris strain from 2009 clustered in clade IV. Overall, 98 strains clustered within clade III (85%), 14 within clade I (12%) and three within clade IV (3%). All environmental and colonizing strains clustered in clade III. We also identified known clade-specific resistance mutations in the ERG11 and FKS1 genes. Identification of clade I strains between 2016 and 2018 suggests introductions from South Asia followed by local transmission. SNP analysis characterized most C. auris strains into clade III, the clade first reported from South Africa, but the presence of clades I and IV strains also suggest early introductions from other regions.
Project description:Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Project description:Candida auris is an emerging worldwide fungal pathogen. Over the past 20 years, 61 patient isolates of C. auris (4 blood and 57 ear) have been obtained from 13 hospitals in Korea. Here, we reanalyzed those molecularly identified isolates using two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, including Biotyper and Vitek MS, followed by antifungal susceptibility testing, sequencing of the ERG11 gene, and genotyping. With a research-use-only (RUO) library, 83.6% and 93.4% of the isolates were correctly identified by Biotyper and Vitek MS, respectively. Using an in vitro diagnostic (IVD) library of Vitek MS, 96.7% of the isolates were correctly identified. Fluconazole-resistant isolates made up 62.3% of the isolates, while echinocandin- or multidrug-resistant isolates were not found. Excellent essential (within two dilutions, 96.7%) and categorical agreements (93.4%) between the Clinical and Laboratory Standards Institute (CLSI) and Vitek 2 (AST-YS07 card) methods were observed for fluconazole. Sequencing ERG11 for all 61 isolates revealed that only 3 fluconazole-resistant isolates showed the Erg11p amino acid substitution K143R. All 61 isolates showed identical multilocus sequence typing (MLST). Pulsed-field gel electrophoresis (PFGE) analyses revealed that both blood and ear isolates had the same or similar patterns. These results show that MALDI-TOF MS and Vitek 2 antifungal susceptibility systems can be reliable diagnostic tools for testing C. auris isolates from Korean hospitals. The Erg11p mutation was seldom found among Korean isolates of C. auris, and multidrug resistance was not found. Both MLST and PFGE analyses suggest that these isolates are genetically similar.
Project description:ObjectiveCandida auris is a globally emerging pathogen associated with significant mortality. This pathogen frequently is misidentified by traditional biochemical methods and is resistant to commonly used antifungals. The echinocandins currently are recommended as the first-line treatment for C. auris infections. The objective of this work is to demonstrate the challenges associated with C. auris in the real-world setting.MethodsA 54-year-old male presented to our institution for concerns of sepsis on multiple occasions over a 5-month period. Eleven urine cultures were positive over this timeframe for yeast (9 unidentified Candida isolates and 2 C. lusitaniae isolates). On day 27, the patient developed echinocandin-susceptible candidemia, which was initially identified as C. haemulonii but later accurately identified as C. auris at an outside mycology reference laboratory. Approximately 10 weeks later, the patient had a recurrence of candidemia, this time caused by an echinocandin-resistant C. auris strain.ResultsGenomic DNA sequencing performed at the outside mycology reference laboratory identified a single serine to proline base pair change at position 639 (S639P) in the hotspot 1 region of the FKS1 gene of the echinocandin-resistant strain.ConclusionsOur experiences highlight 4 major concerns associated with C. auris: misidentification, persistent colonization, infection recurrence despite the receipt of appropriate initial therapy, and development of resistance.
Project description:BackgroundCandida auris is a pathogen first found in external ear canal, becoming a major threat to global health. Here, we describe a candidemia case caused by a novel drug-resistant Candida auris strain.Case presentationAn 80-year-old patient, with multiple serious medical conditions, was suffered from candidemia caused by Candida auris, died 9 days after admission in our hospital. Phylogenetic analysis indicates that this C. auris isolate (designated BJCA003) belongs to the South Asian clade, carries the Y132F mutation in the protein Erg11. And antibiotic susceptibility test indicated that BJCA003 is resistant to fluconazole and amphotericin B, not susceptible to caspofungin. In addition, this strain has multiple colony and cellular morphologies under different culture conditions.ConclusionStrain BJCA003 is a novel drug resistant C. auris strain in mainland China, the Y132F mutation in Erg11 may attribute to fluconazole-resistance, alarming that we still face more challenges about C. auris.